
Interactive Theorem Proving  
in Higher-Order Logics

Jasmin Blanchette

Partly based on material by 
Mike Gordon, Tobias Nipkow, and Andrew Pitts

Automatic
Interactive

What are proof assistants?

Proof assistants (or interactive theorem provers) 
are programs with a graphical user interface designed for
proving logical formulas.

The logical formulas may represent mathematical theorems 
but also the correctness of hardware or software.

Proof assistants help catch almost all flaws in pen-and-
paper proofs, but they are tedious to use.

What are they based on?
Different proof assistants are based on different logics.

Some logics are more expressive (flexible) than others; 
others are easier to automate.

First-Order Logic

Set Theory Type Theory

Higher-Order Logic

less expressive 
easier to automate

more expressive 
harder to automate

Why should we trust them?

Some proof assistants are designed around a 
small inference kernel, with simple logical primitives.

Some generate detailed proof objects, which can 
be rechecked independently by small programs.

And some just have to be trusted.

What are the main systems?

First-Order Logic

Higher-Order Logic

Set Theory

Type Theory

ACL2 

HOL4
HOL Light
Isabelle/HOL
PVS

Isabelle/ZF
Mizar

Agda
Coq
Lean
Matita

✓x 

✓x
✓x
✓x
✓x

✓x
✓x

✓x
✓x
✓x
✓x

Proof objects

()

()

Small kernel

✓x 

✓x
✓x
✓x
✓x

✓x
✓x

✓x
✓x
✓x
✓x

()

()✓

()✓

Are proof assistants toys?

Mathematics

Hardware

Software

Programming
languages

Four-color theorem
Feit-Thompson theorem
Kepler conjecture 

AMD 
Intel

Compiler
Operating system

Program semantics courses
POPL conference

Coq
Coq
HOL Light & Isabelle/HOL 

ACL2 
HOL Light

Coq
Isabelle/HOL

Coq & Isabelle/HOL
Coq & Agda

Are proof assistants toys?

Automated 
reasoning

Completeness of FOL 
SAT proof checkers 
SAT solver with 2WL 
Resolution
Superposition  

 

Coq, Isabelle/HOL, Mizar, ... 
ACL2, Coq, Isabelle/HOL
Isabelle/HOL
Isabelle/HOL 
Isabelle/HOL 

What do proofs look like?

Tactical proofs apply tactics to the proof goal to produce a
new proof goal, proceeding in a backward fashion.

Declarative proofs state intermediate properties,
proceeding in a forward fashion.

Let us prove A and B implies B and A using tactics.
 
Goal:ss A and B implies B and A
Tactic:s rule and-left
Goal: ss A, B implies B and A
Tactic:s rule and-right
Goals:s A, B implies B and A, B implies A
Tactics: rule implies-trivial rule implies-trivial
No goals left

What do proofs look like?

What do proofs look like?

Let us prove A and B implies B and A declaratively.

proof 
 assume A and B 
 from A and B have A by (rule and-get-left) 
 from A and B have B by (rule and-get-right) 
 from B, A show B and A by (rule and-right) 
qed 

Can proofs be automated?
Most proof assistants offer a variety of general and specialized
automatic tactics.

The Simplifier rewrites by applying equations left-to-right; 
e.g. the equation x + 0 = x can be used to simplify the goal  
2 + 0 < 3 to 2 < 3.

The Arithmetic Procedure can prove formulas involving linear
arithmetic, e.g. 2 < 3, k > n or k = 0 or [k ≤ n and k ≠ 0].

The General Reasoner performs a systematic, bounded proof
search, applying rules like and-left and and-right.

Can proofs be automated?

In addition, automatic theorem provers can be invoked via
tools such as Sledgehammer for Isabelle/HOL and
HOLyHammer for HOL Light and HOL4.

These provers perform a systematic search in first-order logic
and are designed to be very efficient.

There are also integrations of computer algebra systems.

Does there exist a function f from reals to reals such that  
for all x and y, f(x + y2) − f(x) ≥ y?

let lemma = prove
(`!f:real->real. ~(!x y. f(x + y * y) - f(x) >= y)`,
 REWRITE_TAC[real_ge] THEN REPEAT STRIP_TAC THEN
 SUBGOAL_THEN `!n x y. &n * y <= f(x + &n * y * y) - f(x)` MP_TAC THENL
 [MATCH_MP_TAC num_INDUCTION THEN SIMP_TAC[REAL_MUL_LZERO; REAL_ADD_RID] THEN
 REWRITE_TAC[REAL_SUB_REFL; REAL_LE_REFL; GSYM REAL_OF_NUM_SUC] THEN
 GEN_TAC THEN REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN
 FIRST_X_ASSUM(MP_TAC o SPECL [`x + &n * y * y`; `y:real`]) THEN
 SIMP_TAC[REAL_ADD_ASSOC; REAL_ADD_RDISTRIB; REAL_MUL_LID] THEN
 REAL_ARITH_TAC;
 X_CHOOSE_TAC `m:num` (SPEC `f(&1) - f(&0):real` REAL_ARCH_SIMPLE) THEN
 DISCH_THEN(MP_TAC o SPECL [`SUC m EXP 2`; `&0`; `inv(&(SUC m))`]) THEN
 REWRITE_TAC[REAL_ADD_LID; GSYM REAL_OF_NUM_SUC; GSYM REAL_OF_NUM_POW] THEN
 REWRITE_TAC[REAL_FIELD `(&m + &1) pow 2 * inv(&m + &1) = &m + &1`;
 REAL_FIELD `(&m + &1) pow 2 * inv(&m + &1) * inv(&m + &1) = &1`] THEN
 ASM_REAL_ARITH_TAC]);;

John Harrison

Does there exist a function f from reals to reals such that  
for all x and y, f(x + y2) − f(x) ≥ y?

[1] f(x + y2) − f(x) ≥ y for any x and y (given)

[2] f(x + n y2) − f(x) ≥ n y for any x, y, and natural number n
 (by an easy induction using [1] for the step case)

[3] f(1) − f(0) ≥ m + 1 for any natural number m
 (set n = (m + 1)2, x = 0, y = 1/(m + 1) in [2])

[4] Contradiction of [3] and the Archimedean property
 of the reals

John Harrison

intermediate 
properties

generated
automatically

manual

vs.

well suited for
large formalizations

but
require intensive
manual labor

fully automatic

but
no proof 

management

Sledge-
hammer

Proof assistants Automatic provers

h A

�
=Isa

be
lle

`

_

Isa
be

lle Vampire

� �

�
=Isa

be
lle

�

�

HOL

select lemmas +
translate to FOL

reconstruct proof

superposition 

SMT

superposition  SMT

refutational

resolution rule

term ordering

equality reasoning

 
E, SPASS, Vampire, …

redundancy criterion

refutational

SAT solver

+ congruence closure

+ quantifier instantiation

 
CVC4, veriT, Yices, Z3, …

+ other theories (e.g. LIA, LRA)

pre-Sledgehammer
 
Otter in ACL2
Bliksem in Coq
Gandalf in HOL98
DISCOUNT, SPASS, etc., in ILF
Otter, SPASS, etc., in KIV
LEO, SPASS, etc., in ΩMEGA
E, Vampire, etc., in Naproche
...

post-Sledgehammer

HOLyHammer for HOLs
MizAR for Mizar
SMTCoq/CVC4Coq for Coq
SMT integration in TLAPS
...

How many hammers are there?

I have recently been working on a new development.
Sledgehammer has found some simply incredible
proofs. I would estimate the improvement in
productivity as a factor of at least three, maybe five.

Sledgehammers … have led to visible success. Fully
automated procedures can prove … 47% of the HOL

Light/Flyspeck libraries, with comparable rates in
Isabelle. These automation rates represent an

enormous saving in human labor.

Developing proofs without Sledgehammer is
like walking as opposed to running.

Larry Paulson

Thomas Hales

Tobias Nipkow

⊕ teaching revolution:
Isar + auto + induct + Sledgehammer

⊕ lemma search

⊕ productivity

⊖ higher-order (induction)

⊖ too much search, not enough computation/intuition

⊖ end-game/transparency

⊖ other logical mismatches

⊖ what about nontheorems?

What if the formula is wrong?

Counterexample generators automatically test the goal with
different values.

They are useful to detect errors early, whether they are in
the formula to prove or in the concepts on which it builds.

lemma i ≤ j and n ≤ m implies in + jm ≤ im + jn 
nitpick

Counterexample: i = n = 0 and j = m = 1

HOL
FORL

SAT

Isabelle Nitpick .Kodkod.. .SAT solver

Under the hood

=Isa

be
lle

HOL

HOL == higher-order logic

= logic of HOL Light, HOL Zero, ProofPower–HOL
= logic of Gordon’s HOL88 and successors

= Church’s simple theory of types + polymorphism

= logic of PVS (+ dependent types)

= logic of Isabelle/HOL (+ type classes)

What is HOL?

Syntax of types

33

Types

Basic syntax:

⌧ ::= (⌧)
| bool | nat | int | . . . base types
| 0a | 0b | . . . type variables
| ⌧) ⌧ functions
| ⌧ ⇥ ⌧ pairs (ASCII: *)
| ⌧ list lists
| ⌧ set sets
| . . . user-defined types

Convention: ⌧ 1) ⌧ 2) ⌧ 3 ⌘ ⌧ 1) (⌧ 2) ⌧ 3)

Types

Basic syntax:

⌧ ::= (⌧)
| bool | nat | int | . . . base types
| 0a | 0b | . . . type variables
| ⌧) ⌧ functions
| ⌧ ⇥ ⌧ pairs (ASCII: *)
| ⌧ list lists
| ⌧ set sets
| . . . user-defined types

Convention: ⌧ 1) ⌧ 2) ⌧ 3 ⌘ ⌧ 1) (⌧ 2) ⌧ 3)Convention:

Syntax of terms

34

Convention:

Terms
Basic syntax:

t ::= (t)
| a constant or variable (identifier)
| t t function application
| �x. t function abstraction
| . . . lots of syntactic sugar

Examples: f (g x) y
h (�x. f (g x))

Convention: f t1 t2 t3 ⌘ ((f t1) t2) t3

This language of terms is known as the �-calculus.

Terms
Basic syntax:

t ::= (t)
| a constant or variable (identifier)
| t t function application
| �x. t function abstraction
| . . . lots of syntactic sugar

Examples: f (g x) y
h (�x. f (g x))

Convention: f t1 t2 t3 ⌘ ((f t1) t2) t3

This language of terms is known as the �-calculus.

35

Isabelle’s metalogic

The HOL types and terms are part of the metalogic.

Alpha-, beta-, eta-equivalence is built-in:

8 Chapter 2. Isabelle/HOL

In keeping with the logic’s higher-order nature, variables can have function types.
We write x and c rather than x s and cs when the type s is irrelevant or clear from
the context; conversely, we write ts to indicate that an arbitrary term t has type s.

The metalogical operators are

=)prop�prop�prop implicationV(a�prop)�prop universal quantification
⌘a�a�prop equality

We write
V

x. t as an abbreviation for
V

(lx. t) and similarly for the other binders
introduced later. The operators =) and ⌘ are written infix. In addition to the
usual equality rules (symmetry, reflexivity, transitivity, and substitutivity), the a-
renaming, b-reduction, and h-expansion rules from the l-calculus also apply:

a
(lx. t[x]) ⌘ (ly. t[y])

b
(lx. t[x]) u ⌘ t[u]

h
ts�t ⌘ (lx s. t x)

Proviso for h: x s does not appear free in t.

For both types and terms, Isabelle distinguishes between two kinds of free variable.
Schematic variables can be instantiated arbitrarily, whereas nonschematic variables
represent fixed but unknown terms or types. Although formulas can involve both
kinds of variable simultaneously, this is rarely necessary: When stating a conjec-
ture and proving it, the type and term variables are normally fixed, and once it is
proved, they become schematics so that users of the lemma can instantiate them as
they wish. In this thesis, we restrict ourselves to this use case and let the context
(lemma or conjecture) determine whether the variables are schematic.

2.2 The HOL Object Logic

HOL is the most widely used instance of Isabelle and is the only object logic sup-
ported by Nitpick and Sledgehammer. It provides classical higher-order logic [4,
56,82] with ML-style rank-1 polymorphism, extended with Haskell-style axiomatic
type classes [135, 201].

HOL axiomatizes a type bool of Booleans, which we abbreviate to o (omicron). It
defines the constants Falseo, Trueo, and =a�a�o (with !o�o�o as surface syntax),
the connectives ¬o�o, ^o�o�o, _o�o�o, and �!o�o�o, the quantifiers 8 (a�o)�o and
9 (a�o)�o, and the conditional expression ‘if then else’o�a�a�a. Equality on functions
is extensional:

(
V

x. f x = g x) =) f = g

HOL also provides the definite and indefinite description operators i(a�o)�a and
(a�o)�a axiomatized by

(ix. x = a) = a P x =) P (# P)

The # operator is often called Hilbert choice. Both operators are binders; # P can
be h-expanded into # (lx. P x), i.e., #x. P x. HOL types are inhabited (nonempty),
and we can obtain an arbitrary element of a type s using either #x s. True or the
unspecified constant undefineds.

Notations

36

Implication and function arrows associate to the right:

 a ⇒ b ⇒ c means a ⇒ (b ⇒ c)

The rule format is sometimes used instead of ⇒, e.g.:

a b
c

Typing rules

37

Terms must be well typed
(the argument of every function call must be of the right type).

HOL is weaker than ZF set theory but for most
applications this does not matter. If you prefer
ML to Lisp, you will probably prefer HOL to ZF.

— Lawrence C. Paulson (1993)

Chapter 2

Isabelle/HOL

Isabelle [140] is a generic interactive theorem prover whose built-in metalogic is
an intuitionistic fragment of higher-order logic [4, 56, 82]. The HOL object logic
provides a more elaborate version of higher-order logic, complete with the familiar
connectives and quantifiers. Isabelle/HOL provides various definitional principles
for introducing new types and constants safely. This chapter provides a brief intro-
duction to Isabelle/HOL, focusing on the features that are needed in this thesis and
taking some liberties with the official syntax to lighten the presentation.

2.1 The Metalogic

Definition 2.1 (Syntax). The types and terms of Isabelle are that of the simply
typed l-calculus, augmented with constants, n-ary type constructors, and ML-style
polymorphism.

Types: Terms:
s ::= a type variable t ::= x s variable

| s̄ k type constructor | cs constant
| lx s. t l-abstraction
| t t0 application

We reserve the Greek letters a, b, g for type variables, s, t, u for types, x, y, z for
term variables, and t, u for terms, although we will also use many other letters for
terms. Lists of zero or more instances of a syntactic quantity are indicated by a
bar (e.g., s̄). Type constructors are written in ML-style postfix notation (e.g., a list,
(a, b)map). We set constants in sans serif to distinguish them from variables. Func-
tion application expects no parentheses around the argument list and no commas
between the arguments, as in f x y. Syntactic sugar provides an infix syntax for
common operators, such as x = y and x + y.

The standard semantics interprets the type prop of propositions (formulas) and the
type of functions a ! b. The function arrow associates to the right, reflecting the
left-associativity of application. We assume throughout that terms are well-typed
using the following (simplified) typing rules:

` x s : s ` cs : s

` t : t

` lx s. t : s ! t

` t : s ! t ` u : s

` t u : t

7

HOL is weaker than ZF set theory but for most
applications this does not matter. If you prefer
ML to Lisp, you will probably prefer HOL to ZF.

— Lawrence C. Paulson (1993)

Chapter 2

Isabelle/HOL

Isabelle [140] is a generic interactive theorem prover whose built-in metalogic is
an intuitionistic fragment of higher-order logic [4, 56, 82]. The HOL object logic
provides a more elaborate version of higher-order logic, complete with the familiar
connectives and quantifiers. Isabelle/HOL provides various definitional principles
for introducing new types and constants safely. This chapter provides a brief intro-
duction to Isabelle/HOL, focusing on the features that are needed in this thesis and
taking some liberties with the official syntax to lighten the presentation.

2.1 The Metalogic

Definition 2.1 (Syntax). The types and terms of Isabelle are that of the simply
typed l-calculus, augmented with constants, n-ary type constructors, and ML-style
polymorphism.

Types: Terms:
s ::= a type variable t ::= x s variable

| s̄ k type constructor | cs constant
| lx s. t l-abstraction
| t t0 application

We reserve the Greek letters a, b, g for type variables, s, t, u for types, x, y, z for
term variables, and t, u for terms, although we will also use many other letters for
terms. Lists of zero or more instances of a syntactic quantity are indicated by a
bar (e.g., s̄). Type constructors are written in ML-style postfix notation (e.g., a list,
(a, b)map). We set constants in sans serif to distinguish them from variables. Func-
tion application expects no parentheses around the argument list and no commas
between the arguments, as in f x y. Syntactic sugar provides an infix syntax for
common operators, such as x = y and x + y.

The standard semantics interprets the type prop of propositions (formulas) and the
type of functions a ! b. The function arrow associates to the right, reflecting the
left-associativity of application. We assume throughout that terms are well-typed
using the following (simplified) typing rules:

` x s : s ` cs : s

` t : t

` lx s. t : s ! t

` t : s ! t ` u : s

` t u : t

7

HOL is weaker than ZF set theory but for most
applications this does not matter. If you prefer
ML to Lisp, you will probably prefer HOL to ZF.

— Lawrence C. Paulson (1993)

Chapter 2

Isabelle/HOL

Isabelle [140] is a generic interactive theorem prover whose built-in metalogic is
an intuitionistic fragment of higher-order logic [4, 56, 82]. The HOL object logic
provides a more elaborate version of higher-order logic, complete with the familiar
connectives and quantifiers. Isabelle/HOL provides various definitional principles
for introducing new types and constants safely. This chapter provides a brief intro-
duction to Isabelle/HOL, focusing on the features that are needed in this thesis and
taking some liberties with the official syntax to lighten the presentation.

2.1 The Metalogic

Definition 2.1 (Syntax). The types and terms of Isabelle are that of the simply
typed l-calculus, augmented with constants, n-ary type constructors, and ML-style
polymorphism.

Types: Terms:
s ::= a type variable t ::= x s variable

| s̄ k type constructor | cs constant
| lx s. t l-abstraction
| t t0 application

We reserve the Greek letters a, b, g for type variables, s, t, u for types, x, y, z for
term variables, and t, u for terms, although we will also use many other letters for
terms. Lists of zero or more instances of a syntactic quantity are indicated by a
bar (e.g., s̄). Type constructors are written in ML-style postfix notation (e.g., a list,
(a, b)map). We set constants in sans serif to distinguish them from variables. Func-
tion application expects no parentheses around the argument list and no commas
between the arguments, as in f x y. Syntactic sugar provides an infix syntax for
common operators, such as x = y and x + y.

The standard semantics interprets the type prop of propositions (formulas) and the
type of functions a ! b. The function arrow associates to the right, reflecting the
left-associativity of application. We assume throughout that terms are well-typed
using the following (simplified) typing rules:

` x s : s ` cs : s

` t : t

` lx s. t : s ! t

` t : s ! t ` u : s

` t u : t

7

HOL is weaker than ZF set theory but for most
applications this does not matter. If you prefer
ML to Lisp, you will probably prefer HOL to ZF.

— Lawrence C. Paulson (1993)

Chapter 2

Isabelle/HOL

Isabelle [140] is a generic interactive theorem prover whose built-in metalogic is
an intuitionistic fragment of higher-order logic [4, 56, 82]. The HOL object logic
provides a more elaborate version of higher-order logic, complete with the familiar
connectives and quantifiers. Isabelle/HOL provides various definitional principles
for introducing new types and constants safely. This chapter provides a brief intro-
duction to Isabelle/HOL, focusing on the features that are needed in this thesis and
taking some liberties with the official syntax to lighten the presentation.

2.1 The Metalogic

Definition 2.1 (Syntax). The types and terms of Isabelle are that of the simply
typed l-calculus, augmented with constants, n-ary type constructors, and ML-style
polymorphism.

Types: Terms:
s ::= a type variable t ::= x s variable

| s̄ k type constructor | cs constant
| lx s. t l-abstraction
| t t0 application

We reserve the Greek letters a, b, g for type variables, s, t, u for types, x, y, z for
term variables, and t, u for terms, although we will also use many other letters for
terms. Lists of zero or more instances of a syntactic quantity are indicated by a
bar (e.g., s̄). Type constructors are written in ML-style postfix notation (e.g., a list,
(a, b)map). We set constants in sans serif to distinguish them from variables. Func-
tion application expects no parentheses around the argument list and no commas
between the arguments, as in f x y. Syntactic sugar provides an infix syntax for
common operators, such as x = y and x + y.

The standard semantics interprets the type prop of propositions (formulas) and the
type of functions a ! b. The function arrow associates to the right, reflecting the
left-associativity of application. We assume throughout that terms are well-typed
using the following (simplified) typing rules:

` x s : s ` cs : s

` t : t

` lx s. t : s ! t

` t : s ! t ` u : s

` t u : t

7

Type inference

38

Isabelle computes types of variables
(and polymorphic constants) automatically.

In the presence of overloaded functions,
this is not always possible.

Users can provide type annotations inside
the terms:

 e.g. f (x :: nat)

Currying

39

"Thou shalt curry thy functions."

Currying

Thou shalt Curry thy functions

• Curried: f :: ⌧ 1) ⌧ 2) ⌧

• Tupled: f 0 :: ⌧ 1 ⇥ ⌧ 2) ⌧

Advantage:

Currying allows partial application
f a1 where a1 :: ⌧ 1

Currying allows partial applications:

e.g. (op +) 1

40

Metalogical propositions

Propositions have type prop (intuitionistic).

Built-in operators:

8 Chapter 2. Isabelle/HOL

In keeping with the logic’s higher-order nature, variables can have function types.
We write x and c rather than x s and cs when the type s is irrelevant or clear from
the context; conversely, we write ts to indicate that an arbitrary term t has type s.

The metalogical operators are

=)prop�prop�prop implicationV(a�prop)�prop universal quantification
⌘a�a�prop equality

We write
V

x. t as an abbreviation for
V

(lx. t) and similarly for the other binders
introduced later. The operators =) and ⌘ are written infix. In addition to the
usual equality rules (symmetry, reflexivity, transitivity, and substitutivity), the a-
renaming, b-reduction, and h-expansion rules from the l-calculus also apply:

a
(lx. t[x]) ⌘ (ly. t[y])

b
(lx. t[x]) u ⌘ t[u]

h
ts�t ⌘ (lx s. t x)

Proviso for h: x s does not appear free in t.

For both types and terms, Isabelle distinguishes between two kinds of free variable.
Schematic variables can be instantiated arbitrarily, whereas nonschematic variables
represent fixed but unknown terms or types. Although formulas can involve both
kinds of variable simultaneously, this is rarely necessary: When stating a conjec-
ture and proving it, the type and term variables are normally fixed, and once it is
proved, they become schematics so that users of the lemma can instantiate them as
they wish. In this thesis, we restrict ourselves to this use case and let the context
(lemma or conjecture) determine whether the variables are schematic.

2.2 The HOL Object Logic

HOL is the most widely used instance of Isabelle and is the only object logic sup-
ported by Nitpick and Sledgehammer. It provides classical higher-order logic [4,
56,82] with ML-style rank-1 polymorphism, extended with Haskell-style axiomatic
type classes [135, 201].

HOL axiomatizes a type bool of Booleans, which we abbreviate to o (omicron). It
defines the constants Falseo, Trueo, and =a�a�o (with !o�o�o as surface syntax),
the connectives ¬o�o, ^o�o�o, _o�o�o, and �!o�o�o, the quantifiers 8 (a�o)�o and
9 (a�o)�o, and the conditional expression ‘if then else’o�a�a�a. Equality on functions
is extensional:

(
V

x. f x = g x) =) f = g

HOL also provides the definite and indefinite description operators i(a�o)�a and
(a�o)�a axiomatized by

(ix. x = a) = a P x =) P (# P)

The # operator is often called Hilbert choice. Both operators are binders; # P can
be h-expanded into # (lx. P x), i.e., #x. P x. HOL types are inhabited (nonempty),
and we can obtain an arbitrary element of a type s using either #x s. True or the
unspecified constant undefineds.

41

The HOL object logic
Propositions have type bool (classical).

The familiar operators are defined on bool
(False, True, =, ∀, ∃, ¬, →, ∧, ∨, …).

⟷ is syntactic sugar for =.

Trueprop is a special implicit constant that
converts a bool to a prop.

e.g. a ∧ b ⇒ c is really

 Trueprop (a ∧ b) ⇒ Trueprop c

42

Predefined syntactic sugar
Predefined syntactic sugar

• Infix: +, �, ⇤, #, @, . . .

• Mixfix: if then else , case of, . . .

Prefix binds more strongly than infix:
! f x + y ⌘ (f x) + y 6⌘ f (x + y) !

Enclose if and case in parentheses:
! (if then else) !

Predefined syntactic sugar

• Infix: +, �, ⇤, #, @, . . .

• Mixfix: if then else , case of, . . .

Prefix binds more strongly than infix:
! f x + y ⌘ (f x) + y 6⌘ f (x + y) !

Enclose if and case in parentheses:
! (if then else) !

Predefined syntactic sugar

• Infix: +, �, ⇤, #, @, . . .

• Mixfix: if then else , case of, . . .

Prefix binds more strongly than infix:
! f x + y ⌘ (f x) + y 6⌘ f (x + y) !

Enclose if and case in parentheses:
! (if then else) !

Prefix binds more strongly than infix:

Enclose if and case in parentheses:

43

Theory = Isabelle fileTheory = Isabelle Module

Syntax: theory MyTh
imports T1 . . .Tn

begin
(definitions, theorems, proofs, ...)⇤

end

MyTh: name of theory. Must live in file MyTh.thy

T
i

: names of imported theories. Import transitive.

Usually: imports Main

Types and terms must be enclosed in quotes ("),
except for single identifiers.

44

Extensions

New types are carved out of an old type.
New constants are defined in terms of old ones.

Definitional

Axiomatic
New types are declared and characterized by axioms.
New constants are introduced by axioms.

Locales
Parameterized by types, terms, and assumptions.
Assumptions discharged upon instantiation.

Definitional

typedef ’a dlists = {xs : ’a list | distinct xs}

(co)datatype, quotient_type are built on typedef

Type Constructors

(Term) Constants

definition id :: ’a => ’a where id x = x

(co)inductive, fun, prim(co)rec, corec, lift_definition  
are built on definition

Axiomatic

typedecl ’a dlist

Type Constructors

(Term) Constants

axiomatization
 Abs_dlist :: ’a list => ’a dlist and
 Rep_dlist :: ’a dlist => ’a list  
where Abs_Rep: distinct xs ==> Rep (Abs xs) = xs

Locales

locale semigroup =
 fixes f :: ’a => ’a => ’a (infixl "*" 70)
 assumes assoc: a * b * c = a * (b * c) 
begin
 …
end

They combine 
 – type parameters 
 – term parameters 
 – assumptions.

They are not part of Isabelle’s kernel.

48

Proof styles

Tactics directly modify the proof state.
Backward: reduction of goal to True.

Tactical (apply-style)

Declarative (Isar-style)
Textual, linearized natural deduction.
Forward: intermediate steps towards final goal.

49

Apply-style proofs
apply method
apply (method arg1 … argN)

Main methods: 
 simp  
 auto
 blast
 metis
 arith
 rule

Also: try0 and try tools

by method
done

50

Isar-style proofs
proof method [or -]
 fix x1 … xn 
 assume A1 … An
 have P1 by (method …)
 …
 have Pk by (method …)
 show Q by (method …)
qed

Instead of by: nested proof block.
Instead of have: obtain y1 … ym where P.

Extensional equality is axiomatized, 
the other logical constants

are definable.

True := ((λx. x) = (λx. x))
All := (λP. P = (λx. True))

∀x. P x :≣ All (λx. P x)

Demo

In conclusion
Proof assistants are wonderful and dreadful.

In some areas (esp. of computer science), they are more
wonderful than dreadful. (And they are very addictive.)

They can serve as the glue between automatic theorem
provers, computer algebra systems, and the human.

Exhortation: Try them out, and see for yourself if they make 
sense for your research.

