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What are proof assistants?

Proof assistants (or interactive theorem provers)
are programs with a graphical user interface designed for
proving logical formulas.

The logical formulas may represent mathematical theorems
but also the correctness of hardware or software.

Proof assistants help catch almost all flaws in pen-and-
paper proofs, but they are tedious to use.




What are they based on?

Different proof assistants are based on different logics.

Some logics are more expressive (flexible) than others;
others are easier to automate.

less expressive
easler to automate

First-Order Logic

Higher-Order Logic

more expressive
harder to automate

Set Theory Type Theory



Why should we frust them?

Some proof assistants are designed around a
small inference kernel, with simple logical primitives.

Some generate detailed proof objects, which can
be rechecked independently by small programs.

And some just have to be trusted.



What are the main systems?

Small kernel  Proof objects
First-Order Logic ACL2
Higher-Order Logic HOL4 v
HOL Light v V)
sabelle/HOL v v
PVS V) (V)
Set Theory Isabelle/ZF v v
Mizar V)
Type Theory Agda v
Cog v
Lean (V) v
Matita v



Are proof assistants toys?

Mathematics

Hardware

Software

Programming
languages

~our-color theorem
Feit-Thompson theorem
Kepler conjecture

AMD
Intel

Compiler
Operating system

Program semantics courses
POPL conference

Coc
Coc
HOL Light & Isabelle/HOL

ACL2
HOL Light

Cog
|sabelle/HOL

Coq & Isabelle/HOL
Coq & Agda



Are proof assistants toys?

Automated Completeness of FOL Coq, Isabelle/HOL, Mizar, ...
reasoning SAT proof checkers ACL2, Coq, Isabelle/HOL
SAT solver with 2WL sabelle/HOL
Resolution sabelle/HOL
Superposition sabelle/HOL




What do proofs look like?

Tactical proofs apply tactics to the proof goal to produce a
new proof goal, proceeding in a backward fashion.

Declarative proofs state infermediate properties,
proceeding in a forward fashion.



What do proofs look like?

Let us prove A and B implies B and A using tactics.

Goal: A andB implies Band A

Tactic: rule and-left

Goal: A, B implies Band A

Tactic: rule and-right

Goals: A, B implies B and A, B implies A
Tactics: rule implies-trivial  rule implies-trivial
No goals left



What do proofs look like?

Let us prove A and B implies B and A declaratively.

proof
assume A and B
from A and B have A by (rule and-get-left)
from A and B have B by (rule and-get-right)
from B, A show B and A by (rule and-right)

qed



Can proofs be automated?

Most proof assistants offer a variety of general and specialized
automatic tactics.

The Simplifier rewrites by applying equations left-to-right;
e.g. the equation x + 0 =x can be used to simplify the goal
2+0<3 to 2<3.

The Arithmetic Procedure can prove formulas involving linear
arithmetic,e.g. 2<3, k>nork=0or [k<nandk = 0].

The General Reasoner performs a systematic, bounded proof
search, applying rules like and-left and and-right.



Can proofs be automated?

n addition, automatic theorem provers can be invoked via

tools such as Sledgehammer for Isabelle/HOL and
HOLyHammer for HOL Light and HOLA4.

These provers perform a systematic search in first-order logic
and are designed fo be very efficient.

There are also integrations of computer algebra systems.



Does there exist a function f from reals to reals such that
for all x and y, f(x + y2) — f(x) = y?

let lemma = prove

(" !f:real->real. ~(Ixy. f(x+y *y) - f(xX) >=y),

REWRITE_TAC[real_ge] THEN REPEAT STRIP_TAC THEN

SUBGOAL_THEN "'n x y. & * y <= f(x + & * y * y) - f(x)° MP_TAC THENL
[MATCH_MP_TAC num_INDUCTION THEN SIMP_TAC[REAL_MUL_LZERO; REAL_ADD_RID] THEN
REWRITE_TAC[REAL_SUB_REFL; REAL_LE_REFL; GSYM REAL_OF_NUM_SUC] THEN
GEN_TAC THEN REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN
FIRST_X_ASSUM(MP_TAC o SPECL ['x + & * y * y*; “y:real ]) THEN
SIMP_TAC[REAL_ADD_ASSOC; REAL_ADD_RDISTRIB; REAL_MUL_LID] THEN
REAL_ARITH_TAC;
X_CHOOSE_TAC "m:num” (SPEC "f(&1) - f(&2):real” REAL_ARCH_SIMPLE) THEN
DISCH_THEN(MP_TAC o SPECL ['SUC m EXP 2°; &2 ; “inv(&(SUC m)) ]) THEN
REWRITE_TAC[REAL_ADD_LID; GSYM REAL_OF_NUM_SUC; GSYM REAL_OF_NUM_POW] THEN
REWRITE_TAC[REAL_FIELD "(&m + &1) pow 2 * inv(&m + &1) = &m + &1°;

REAL_FIELD "(&m + &1) pow 2 * inv(&m + &1) * inv(&m + &1) = &1 ] THEN

ASM_REAL_ARITH_TAC]);;

John Harrison



Does there exist a function f from reals to reals such that
for all x and y, f(x + y2) — f(x) = y?

[1] f(x + y%) — f(x) =y for any x and y (given)

[2] f(x + ny?) — f(x) = ny for any x, y, and natural number n
(by an easy induction using [ 1] for the step case)

[3] /(1) = f(0) 2m + 1 for any natural number m
(setn=M+1)%,x=0,y=1/(m+1)in[2])

[4] Contradiction of [3] and the Archimedean property
of the reals

John Harrison



lemma

shows "= (3f :: real = real. wx yv. f (x +y * y) - f x 2 y)"
proof

"real = real” where f: "aAx y. f (X +y *¥y) - f x 2 y"

have nf:

nave Infermediate
chow “ L ge . : properties

n*y *¥y)-fxz2realn?®*y

case v redse by simp
manual next

case (Suc n) show ?case

"ar,. yETFT (v *y+(xX+y*F(y¥*Frealn))) -ray *Trealn=r -f x"
by (metis Suc.hyps add.commute f mult.commute)
then have "y + v *real n £ f (y * v + (x + ¥y * (v * real n))) - £ x"

by 1inarith
then show "(1 + real n) * v = f (x + (1 + real n) * y * y) - £ x"
by (simp add: add.left_commute distrib_left mult.commute)
ged
ged

aed generated

have min:§"»am, f 1 - f @ 2 real m + 1" .
proo - automatically
fix m
show "f 1 - f @ > real m + 1"
proot -
have "ar ra rb. (r :: real) /ra* rb=r * (rb / ra)"
by simp
then have "real (m + 1) * (real (m + 1) / real (m + 1)) =<
Ve e = =¥a * Ve

C ' eutral of_nat_mult
times_ d1v1de eq_rlght)

then have "real (m + 1) £ f 1 - f @"

by simp
then show 7thesis

~aaa_cance
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“"23": Try this: by (smt Multiset.diff_add add_diff_cancel_right' mset_le_add_right multise
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Isar proof (26 ms):
proof -
have "A + B = A +B + (B - (A + B))"
by (metis msel_le_add_right subsel_msel.sup.orderE sup_subsel_msel_defl)
then have f1: "A + B = (gn+ (B - A)) #u (A + B)"
by (sirp add: Multiset d subset mset.sup commute sup subset mset def)
have "A + (B - A) =B #
by (simp add: subset_
then show 7thesis
using f1 by (simp add: Mu
qaed

ommute sup_subset_mset_def)

isel.diff_add mullisel_inler_defl sup_subsel_msel_defl)

£ w  Qutput Query Sledgehammer Symbcls
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O ® Scratch.thy (modified)
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Lemra "A + B = (A #u B) + (A #n B)" I T

groof - ?

have "A + B = A + B + (B - (A + B))" -

by (metis mset_le_add_right subset_mset.sup.orderE sup_subset_mset_def) m B

then have fl1: "A + B = (A + (B - A)) #u (A + B)" 1l o)

by (simp add: Multiset.d.ff add subset mset.sup commute sup subset mset def) o z

have "A + (B - A) = B #u A" ; ”

by (simp add: subset_mset.sup_cormute sup_subset_mset_def) - =

+hean <hnw Z2+hacisz . E:

- = . [r—— N
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proof (sLate) >

goal (1 subgoal): §

1. A+B=A# B + A # B ;
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refutational

resolution rule
term ordering
equality reasoning

redundancy criterion

E, SPASS, Vampire, ...

refutational
SAT solver
+ congruence closure

+ quantifier instantiation
+ other theories (e.g. LIA, LRA)

CVC4, veriT, Yices, 23, ...



How many hammers are there?

pre-Sledgehammer post-Sledgehammer

Otter in ACL2 HOLyHammer for HOLs
Bliksem in Cog MizAR for Mizar

Gandalf in HOL98 SMTCoq/CVC4Coq for Cog

DISCOUNT, SPASS, etc., in ILF SMT integration in TLAPS
Otter, SPASS, etc., in KIV
LEO, SPASS, etc., in OMEGA

E, Vampire, etc., in Naproche




Developing proofs without Sledgehammer is
ike walking as opposed to running.

Tobias Nipkow

| have recently been working on a new development.
Sledgehammer has found some simply incredible
proofs. | would estimate the improvement in
productivity as a factor of at least three, maybe five.

Larry Paulson

Sledgehammers ... have led to visible success. Fully
automated procedures can prove ... 47% of the HOL
Light/Flyspeck libraries, with comparable rates in
Isabelle. These automation rates represent an
enormous saving in human labor. Thomas Hales




® productivity

® teaching revolution:
Isar + auto + induct + Sledgehammer

® lemma search

© higher-order (induction)
© other logical mismatches
© too much search, not enough computation/intuition

© end-game/transparency

© what about nontheorems?



What if the formula is wrong?

Counterexample generators automatically test the goal with
different values.

They are usefu
the formula to

to detect errors early, whether they are in

orove or in the concepts on which it builds.

lemma i <jand n <m implies in + jm <im + jn

nitpick

Counterexample: i=n=0 and j=m=1



o0 e | Nit_Ex.thy
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Under the hood

Isabelle N|’rp|ck Kodkod SAT solver






What i1s HOL?

HOL = higher-order logic
= Church’s simple theory of types + polymorphism

ogic of Gordon’s HOL&8 and successors

ogic of HOL Light, HOL Zero, ProofPower-HOL
ogic of PVS (+ dependent types)

ogic of Isabelle/HOL (+ type classes)




Syntax of types

T = (7T)

bool | nat | int | ... base types
‘a | b | ... type variables
T = T functions
T X T pairs (ASCII: )
T list lists
T Set sets
user-defined types

Convention: Tl = To = T3 = ’T1=>(’72=>’73)

33



Syntax of terms

t = (1)

a constant or variable (identifier)
tt function application
ATt function abstraction

lots of syntactic sugar

Convention: fthtty = (ft1) to) 13

34



Isabelle’s metalogic

The HOL types and terms are part of the metalogic.

Alpha-, beta-, eta-equivalence is built-in:

Y B ]

(Ax. t[x]) = (Ay. t|y]) (Ax. t[x]) u = t|u] t77T = (Ax% t x)

35



Notations

Implication and function arrows associate to the right:

a=b=c means a=(b=c¢)

The rule format is sometimes used instead of =, e.qg.:

a b

36



Typing rules

Terms must be well typed

(the argument of every function call must be of the right type).

~xY 0 —cY 0o

=t T —t:0c0—=T Fu:o

FAxY t:o—T - tu-:T

37



Type Iinference

Isabelle computes types of variables
(and polymorphic constants) automatically.

In the presence of overloaded functions,
this is not always possible.

Users can provide type annotations inside
the ferms:

e.g. f(x:: nat)

38



Currying

"Thou shalt curry thy functions."

Curried: f:: 71 = 79 = 7T
Tupled: f':: 79 X 79 = 7

Currying allows partial applications:

e.g. (op+) 1

39



Metalogical propositions

Propositions have type prop (intuitionistic).

Built-in operators:

—>PTOP=PIOP=PIP implication
A (a=prop)—prop universal quantification
=47 a=prop equality

40



The HOL object logic

Propositions have type bool (classical).

The familiar operators are defined on bool
(False, True, =, V, 3, -, >, A, V, ...).

< Is synfactic sugar for =.

Trueprop is a special implicit constant that
converts a bool to a prop.

e.g. aAb=cisreally
Trueprop (a A b) = Trueprop ¢

41



Predefined syntactic sugar

Infix: +, —, %, #, @, ...

Mixfix: +f _ then _ else _, case _ of, ...

Prefix binds more strongly than infix:

fety = (fo)+y # f(z+y

Enclose if and case in parentheses:

(if _ then _ else )

42



Theory = Isabelle file

theory Mylh

imports 17 ... 1,

begin

(definitions, theorems, proofs, ...)*

end

Types and terms must be enclosed in quotes ("),
except for single identifiers.

43



Extensions

Definitional

New types are carved out of an old type.
New constants are defined in ferms of old ones.

Axiomatic

New types are declared and characterized by axioms.
New constants are infroduced by axioms.

Locales

Parameterized by types, terms, and assumptions.
Assumptions discharged upon instantiation.

44



Definitional

ype Constructors

typedef ‘a dlists = {xs : ‘a list | distinct xs}
(co)datatype, quotient type are built on typedef

(Term) Constants

definition id :: 'a => ‘a where id x = x

(co)inductive, fun, prim(co)rec, corec, lift definition
are built on definition



Axiomatic

ype Constructors

typedecl ‘a dlist

(Term) Constants

axiomatization
Abs dlist :: ‘a list => ‘a dlist and
Rep dlist :: "a dlist => ‘a list
where Abs Rep: distinct xs ==> Rep (Abs xs) = xs




L ocales

They combine
- fype parameters
- ferm parameters
— assumpfions.

locale semigroup =
fixes f :: ‘a =>'a =>"a (infix| "*" 70)

assumes assoc:a*b*c=a* (b * ¢)
begin

end

They are not part of Isabelle’s kernel.



Proof styles

Tactical (apply-style)

Tactics directly modify the proof state.
Backward: reduction of goal to True.

Declarative (Isar-style)

Textual, linearized natural deduction.
Forward: intermediate steps towards final goal.

48



Apply-style proofs

apply method
apply (method arg] ... argN)

by method
done

Main methods: Also: try0 and try tools
simp
auto
blast
metis
arith
rule

49



|sar-style proofs

proof method [or -]
fix x1 ... Xn

assume A1 ... A,
have P; by (method ...)

have P by (method ...)

show Q by (method ...)
qed

Instead of by: nested proof block.
Instead of have: obtain y1 ... y,, where P.

50



Extensional equali’ry IS axioma’rized,
the other logical constants
are definable.

rue := ((Ax. x) = (\x. x))
All := (NP. P = (Mx. True))

Vx.Px := All (\x. P x)



Demo



ln conclusion

Proof assistants are wonderful and dreadful.

In some areas (esp. of computer science), they are more
wonderful than dreadful. (And they are very addictive.)

They can serve as the glue between automatic theorem
provers, computer algebra systems, and the human.

Exhortation: Try them out, and see for yourself if they make
sense for your research.



