
CoCoA and CoCoALib:
Fast Prototyping and Flexible C++ library
for Computations in Commutative Algebra

John Abbott
Institut für Mathematik

Universität Kassel
Kassel, Germany

http://www.dima.unige.it/∼abbott

Anna Maria Bigatti
Dipartimento di Matematica

Università degli Studi di Genova, Italy
http://www.dima.unige.it/∼bigatti

Abstract—The CoCoA project began in 1987, and conducts
research into Computational Commutative Algebra (from which
its name comes) with particular emphasis on Gröbner bases
of ideals in multivariate polynomial rings, and related areas. A
major output of the project is the CoCoA software, including the
CoCoA-5 interactive system and the CoCoALib C++ library. The
software is open-source (GPL v.3), and under continual, active
development. We give a summary of the features of the software
likely to be relevant to the SC-Square community.

I. INTRODUCTION

CoCoA-5 is a well-established Computer Algebra System
specialized in operations on polynomial ideals, and a number
of allied operations (e.g. factorization, and linear algebra).
It offers a dedicated, mathematician-friendly programming
language, and numerous functions covering many aspects of
Commutative Algebra. There is a strong emphasis on both
rigour and ease of use. For details see [1].

The mathematical core of the software is CoCoALib. It is
an open source C++ software library which has been designed
to be user-friendly, facilitating integration with other software.
The library is fully documented, and also comes with about
100 illustrative example programs (since it is often quicker
to copy and modify existing working code than write it from
scratch). For details see [2].

There is also a prototype “CoCoA server” giving access
to many functions via a remote-procedure-call connection.
Currently, communications to and from the server use an
OpenMath-like syntax. A more sophisticated “remote session”
communication model is envisaged, which will reduce overall
transmission costs.

The CoCoA software is interesting to SC-square because
it includes a well-documented, open source C++ library of-
fering a good implementation of Gröbner bases, polynomial
factorization, etc. The interactive system is well-suited to rapid
prototyping, while the server offers possibilities for looser
integration.

II. THE SOFTWARE LIBRARY COCOALIB

A crucial aspect of the CoCoA software is that it was
designed from the outset to be an open-source software library

(with two closely related applications being the interactive
system and the compute server). This initial decision, together
with the desire to help the software prosper, has many im-
plications: e.g. designing a particularly clean interface for all
functions with comprehensive documentation. This cleanliness
makes it easy to integrate CoCoALib into other software in a
trouble-free manner.

Many computer algebra systems have a two-tier structure:
a compiled kernel with interpreter, and an external library
of interpretable code for more advanced functions. Our aim
with CoCoALib is different: we plan to have all functions
implemented directly in the C++ library so that all features
are available to programs which link to CoCoALib.

CoCoALib reports errors using C++ exceptions, while the
library itself is exception-safe and (largely) thread-safe. The
current source code follows the C++03 standard; a passage to
the C++11 standard is planned for the near future (and this
should enable the code to become fully thread-safe).

A. Library Design

We want CoCoALib to be a desirable software library, so it
must be easy to use, reliable, robust and fast. Unfortunately,
achieving all these features together is not always possible,
so there are occasional compromises. One guiding principle is
that we want no nasty surprises.

Here are the main features of the design of CoCoALib:

• it is well-documented, free and open source C++ code
(under the GPL v.3 licence);

• the design is inspired by, and respects, the underlying
mathematical structures;

• the source code is clean and portable;
• the user function interface is natural for mathematicians,

and easy to memorize;
• execution speed is good with robust error detection.

Our design of CoCoALib aims to make it easy to write
correct programs, and difficult to write incorrect ones or ones
which produce “nasty surprises”. While trying to follow this
guideline we encountered some delicate aspects of the design:

• precise definition of a function’s domain (e.g. what result
should IsPrime(-2) give? And IsPrime(0)?)

• a choice between absolute mathematical correctness or
decent computational speed (and a remote chance of a
wrong answer)

In general, CoCoALib handles limit cases properly. The
domain of each CoCoALib function is described in the docu-
mentation; for instance IsPrime throws an exception if the
argument is not strictly positive — our reasoning is that it
is unusual to want to test the primality of zero or a negative
number, so it is likely that the routine which called IsPrime
has already made a mistake, so it is better to report it “as soon
as possible”. CoCoALib offers the programmer the choice
between absolute correctness or probable correctness and good
speed, e.g. IsPrime and IsProbPrime.

An example of design: Finding a library interface which is
easy to learn and use, mathematically correct, but also efficient
at run-time often requires a delicate balance of compromise.
We cite here one example from CoCoALib where the solution
is untraditional but successful.

CoCoALib uses continued fractions internally in various
algorithms. A continued fraction is an expression of the form:

a0 +
1

a1 +
1

a2+
1

a3+···

where a0 is an integer, and a1, a2, . . . are positive integers.
Every rational number has a finite continued fraction which,
for compactness, is often represented as a list of integers
[a0, a1, a2, . . . , as].

The most natural implementation in CoCoALib would sim-
ply compute this list. But in many applications only the first
few ak are needed, and computing the entire list is needlessly
costly. So the CoCoALib implementation produces an iterator
(a basic concept well-known in object-oriented programming)
which produces the values of the ak one at a time.

B. Extending CoCoALib

Naturally most of the source code in CoCoALib was written
by us, but the design of the library (and its openness) was
chosen to facilitate and encourage “outsiders” to contribute.
We distinguish two categories of contribution: code writ-
ten specifically to become part of CoCoALib, and stand-
alone code written without considering its integration into
CoCoALib.

Specific Direct Contributions to CoCoALib: The first out-
side contribution came from M. Caboara, who wrote the
code for computing Gröbner bases and related operations
while CoCoALib was still quite young. At that stage the
detailed implementation of CoCoALib was still quite fluid,
and a number of pretty radical changes in the underlying
data-structures were still to occur; yet despite these upheavals
Caboara’s implementation of Buchberger’s algorithm required
virtually no changes, thus confirming the good modularity and
stability of the CoCoALib interface design.

Another significant outside contribution came from
E. Saenz-de-Cabezon, who wrote the code for computing

Mayer-Vietoris trees associated to monomial ideals. A sig-
nificant aspect of this contribution is that the author worked
completely independently relying entirely on the documenta-
tion of CoCoALib — thus confirming the quality of the docu-
mentation. His work has encouraged us to develop specialized,
efficient handling for monomial ideals (see [7]).

A more recent contribution comes from M. Albert, who
implemented an algorithm for computing Janet Bases of ideals
in polynomial rings. Once a Janet Basis has been obtained,
many ideal invariants can readily be determined ([4], [5]).
Work is still under way to further expand this contribution.

C. Combining with External Libraries

We have combined some of the features of various external
libraries into CoCoALib. An important step in each case is
the “translation” of a mathematical value from its CoCoALib
representation to that of the foreign library, and vice versa.
To make it easier to do this CoCoALib offers operations for
destructuring the various data-structures it operates upon.

One aspect of combining libraries which requires careful
attention is any global initialization the libraries perform, for
instance specifying the memory manager for the common un-
derlying library GMP. CoCoALib addresses this by requiring
explicit initialization of its globals; there are various options,
including one for specifying a memory manager for GMP.

The first library we combined with CoCoALib is Frobby
(see [8]) which is specialized for operations on monomial ide-
als. The experience also helped us improve the interfacibility
of CoCoALib.

The most advanced integration we have achieved so far is
with the Normaliz library (see [6]) for computing with affine
monoids or rational cones. This is part of a closer collaboration
which is described in more detail in [3]. In this particular case,
a new data-structure (called cone) was added to CoCoALib
to contain the type of value which Normaliz computes with.

The most recent integration was with GFanLib (see [9])
which is a C++ software library for computing Gröbner fans
and tropical varieties. The experience gained from the earlier
integrations made this a swift and painless operation.

There is also an experimental connection to some of the
functions of GSL (GNU Scientific Library [10]). This is an
interesting challenge because the interface has to handle two
contrasting viewpoints: the exact world of CoCoALib, and the
approximate (i.e. floating-point) world of GSL.

III. THE INTERACTIVE SYSTEM COCOA-5

The CoCoA-5 system replaces the old CoCoA-4 system
whose heritage can be traced back at least to 1989. For
several reasons CoCoA-5 is a completely new implementation,
whose design was developed under the precept that it be
“as backward-compatible as (reasonably) possible” while also
eliminating the limitations inherent in the older system.

All incarnations of the CoCoA system have been noted
for their approachability especially for “computer-phobic”
mathematicians, and CoCoA-5 is no exception. Indeed, the

aim was to make CoCoA-5 even friendlier than its forebears:
a notable example is the importance given to generating
genuinely helpful error messages.

Here is a typical error message from CoCoA-5; note that the
error was actually signalled by CoCoALib as a C++ exception,
which the interpreter caught, and then “translated” into human-
readable form:

X := 99 + FloorSqrt(-99);
--> ERROR: Value must be non-negative
--> X := 99 + FloorSqrt(-99);
--> ˆˆˆˆˆˆˆˆˆˆˆˆˆˆ

Note how the subexpression which actually triggered the error
is indicated by “up-arrows”, a most helpful feature in more
complicated expressions.

Compared to earlier versions CoCoA-5 has a number of sig-
nificant new abilities, notably including algebraic extensions
and ring homomorphisms. The latter can be used to “move
rigorously” values from one ring to another.

A. The Language in CoCoALib and in CoCoA-5

When designing CoCoALib and CoCoA-5 we envisaged
researchers and advanced users wishing to tackle hard compu-
tations initially developing a prototype implementation in the
convenient interpreted environment of CoCoA-5, and when the
code is working properly, they translate it into C++ (using Co-
CoALib functions) for better performance. Consequently, one
of the joint design goals of CoCoALib and the new CoCoA-5
language was to make it easy to convert CoCoA-5 code into
C++ code built upon CoCoALib. That said, CoCoALib offers
a richer programming environment, but also demands greater
discipline from the programmer. For instance, CoCoA-5 does
not have a special type for a “power-product” (it is just a
polynomial with 1 term and coefficient 1), whereas CoCoALib
has a special class, PPMonoidElem, which represents power-
products. Thus a good translation into C++ of a CoCoA-
5 program manipulating power-products will require some
effort, but the reward should be a decisive gain in speed.

To facilitate the conversion into C++ we have, whenever
possible, used the same function names in both CoCoA-5
and CoCoALib. We have also preferred traditional “func-
tional” syntax in CoCoALib over object oriented “method
dispatch” syntax, e.g. in CoCoALib we define deg(f) rather
than f.deg().

B. Extending CoCoA-5

The capabilities of CoCoALib and CoCoA-5 are continually
expanding as the software evolves. So our design deliberately
makes it easy to add new functions to CoCoA-5. In fact, there
are several ways of extending CoCoA-5.

• The easiest way to add a new function is to write it in
CoCoA-5 Language. Anyone can create new CoCoA-5
functions this way, and for instance give them to students
or colleagues.

• Often there are several functions to be added together;
in this case it is best to place them all in a CoCoA-5

package. The package indicates which of those functions
it will export; the rest are internal auxiliary functions.

• The last way is to write the new functions in C++, add
them to CoCoALib, and then make them “visible” to
CoCoA-5. This last operation is normally quite straight-
forward thanks to an ingenious combination of C++
inheritance and C macros (see [3]). Indeed we use exactly
this mechanism for making standard CoCoALib functions
accessible from an interactive CoCoA-5 session.

While many CoCoA-5 functions just call CoCoALib di-
rectly, there are still a few packages containing functions
which have yet to be migrated into CoCoALib.

IV. THE COCOASERVER

Included in the CoCoA software distribution is the Co-
CoAServer, currently still a prototype which provides a
client/server mechanism for accessing the capabilities of Co-
CoALib. It uses an OpenMath-like language to accept com-
putation requests, and then send the result back. An early
use of the protype was to grant access to CoCoALib features
from CoCoA-4.7 while the new CoCoA-5 system was under
development.

The advantages of computing via a “server” are that it
can be called by any other “client” software (which has an
OpenMath interface), and it avoids the delicate intricacies of
close integration occuring in monolithic compilation.

Currently the server remains in prototype form as resources
are directed, for the time being, at CoCoALib and CoCoA-5.

V. CONCLUSION

The CoCoA software offers access to advanced capabilities
in computational commutative algebra via three interfaces: an
interactive system, a C++ library, and a prototype server. This
variety allows users to choose whichever approach suits them
best.

REFERENCES

[1] J. Abbott, A.M. Bigatti, G. Lagorio, CoCoA-5: a system for do-
ing Computations in Commutative Algebra. Available from website
http://cocoa.dima.unige.it/cocoalib

[2] J. Abbott and A.M. Bigatti, CoCoALib: a C++ library for do-
ing Computations in Commutative Algebra. Available from website
http://cocoa.dima.unige.it/cocoalib

[3] J. Abbott, A.M. Bigatti, C. Söger, Integration of libnormaliz in CoCoALib
and CoCoA 5 Proc. ICMS 2014, Springer LNCS 8592, pp. 647–653,
2014.

[4] M. Albert, Janet Bases in CoCoA; bachelor thesis, Institut für Mathe-
matik, Universität Kassel, 2011.

[5] M. Albert, Computing Minimal Free Resolutions of Polynomial Ideals
with Pommaret Bases master thesis, Institut für Mathematik, Universität
Kassel, 2013.

[6] W. Bruns, B. Ichim, T. Römer, C. Söger Normaliz. Available from
http://www.mathematik.uni-osnabrueck.de/normaliz

[7] O. Fernàndez-Ramos, E. Garcı́a-Llorente, E. Sáenz-de-Cabezón A mono-
mial week (Spanish) Gac. R. Soc. Mat. Esp. 13, No. 3, 515–524, 2010.

[8] B.H. Roune, Frobby. Available from website
http://www.broune.com/frobby

[9] A.N. Jensen, GFan. Available from website
http://home.math.au.dk/jensen/software/gfan/gfan

[10] M. Galassi et al., GNU Scientific Library Reference Manual (3rd
Ed.), ISBN 0954612078. GSL complete package available from website
http://www.gnu.org/software/gsl

