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Abstract. Computing loop invariants, that is properties which hold af-
ter any number of loop iterations, is a major task in program analysis. In
this paper we study nested loops and loops with conditionals. In particu-
lar, we generalize a known invariant generating procedure for P-solvable
multi-path loops to a wider class of admissible programs, so called ex-
tended P-solvable loops.

For reasoning about safety properties of software systems with non-trivial
program flow, code blocks like while-loops and recursive functions, whose num-
ber of execution iterations is unknown during compile time, usually require the
extraction of properties independent of the number of iterations. Most often, this
additional information comes in the form of invariants, that is relations among
the loop variables which hold before and after arbitrarily many executions of the
loop body. In this work we are particularly interested in invariants which are ex-
pressible as polynomial equations in the loop variables. A polynomial invariant
is required to equate to zero when evaluated at the values of the loop variables
after any number of loop iterations. As the set of all polynomial invariants is not
computable when conditions in a while loop of the form while(condition){. . . }
are considered [5], one usually moves to an abstraction while(){. . . } with an
undetermined loop condition.

In [3] a new approach was proposed for generating the set of all polynomial
invariants of so-called P-solvable loops, a class of while-loops where the values of
the loop variables are determined by C-finite sequences. In this procedure, the
loop variables are modeled as linear recurrence equations and their closed form
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solutions are computed. Then, by adding new variables representing exponential
terms, the set of all algebraic relations among the exponential terms, the loop
counter, and the loop variables is determined. This set forms an ideal, which
allows the use of Gröbner basis computations to eliminate the newly added
variables for exponential terms as well as the loop counter to obtain the ideal of
all polynomial loop invariants.

Based on the observation that the values of the variables after a loop execu-
tion are the initial values of a succeeding loop, the approach of [3] was extended
to multi-path loops in [4]. In this context, multi-path loops are nested loops with
conditional branches. Every loop containing nested loops and conditionals can
be transformed into a loop containing nested loops only and is then treated as
a non-deterministic program (see [2]). More precisely, a program with loop bod-
ies / conditional branches L1, L2, . . . , Ln is interpreted as the non-deterministic
program (L∗1;L∗2; . . . ;L∗n)∗, where L∗ denotes the execution of program L arbi-
trarily often and L1;L2 is the sequential execution of L1 and L2.

A new class of loops, called extended P-solvable, was identified in [1] subsum-
ing P-solvable loops. A loop with assignments only, with a loop counter n and
program variables v1, . . . , vt is called extended P-solvable if each of its recursively
changed variables determines a sequence of the form

vi(n) =
∑
k∈Z`

pi,k(n, θn1 , . . . , θ
n
s )((n+ ζ1)n)k1 · · · ((n+ ζ`)

n)k` (1)

where, for a computable field K of characteristic zero, pi,k is a polynomial in
K(x)[y1, . . . , ys], θi, ζj are elements in K for i = 1, . . . , s, j = 1, . . . , `, and θi 6= θj
and ζi − ζj /∈ Z for i 6= j. Furthermore, r(n)n denotes the falling factorial for
r(n) ∈ K(n). Sequences of the form (1) are Hadamard products of C-finite and
hypergeometric sequences. Hence, reasoning about C-finite and hypergeometric
sequences is employed to determine the ideal of polynomial invariants.

So far, only extended P-solvable single-path loops were considered. Based
on the same observation as for P-solvable loops, we propose an algorithm for
computing the set of all polynomial invariants of extended P-solvable multi-path
loops.

In this regard we show that for two given sequences u(m) and v(n) of the
form (1), substituting v(n) for the initial value u(0) of u(m) yields again a se-
quence of the form (1). This closure property ensures that we can merge multiple
loops into one single loop and apply the analogous reasoning as in the single-
path case. The result of this process is the set of all polynomial invariants of
sequentially composed loops L∗1; . . . ;L∗n.

Let Im(L1, . . . , Ln) denote the invariant ideal of a composition

(L∗1; . . . ;L∗n)q;L∗1; . . . ;L∗r

where q is the quotient and r the remainder of m divided by n, and P q denotes
q sequential executions of a non-deterministic program P . Now consider a loop
L containing n inner loops L1, . . . , Ln. In order to derive the invariant ideal
for L we compute the invariant ideal Im(L1, . . . , Ln) for m = 1, 2, . . . until a



fixed-point is reached. Proving that such a fixed-point always exists is subject
to current investigations.

The techniques and methods described in this paper are implemented in the
open source Mathematica package Aligator1 which is available for download
at

https://ahumenberger.github.io/aligator/

We would like to emphasize that the results presented in this work are not
final and subject to ongoing research.
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1 The unpublished results mentioned in this extended abstract are not yet imple-
mented, but will be in the upcoming weeks.
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