
Integration of SMT-LIB Support into Maple

Stephen Forrest

Maplesoft Europe Ltd., Cambridge, UK
sforrest@maplesoft.com

Abstract. The SC2 project [1] arose out of the recognition that the
Computer Algebra and Satisfiability Checking communities mutually
benefit from the sharing of results and techniques. An SMT solver can
profit from the inclusion of computer algebra techniques in their the-
ory solvers, while a computer algebra system can profit from dispatching
SAT or SMT queries which arise as sub-problems during computation
to a dedicated external solver; many existing implementations for both
of these may be found. Here we describe on-going work in the second
category: specifically, we describe an API in Maple for dispatching com-
putations to, and processing results from, an SMT solver supporting the
SMT-LIB format.

1 Introduction

The potential benefits of SMT solvers making effective use of computer alge-
bra techniques in their theory solvers are understood. [2] This is the approach
realized in the implementation of several SMT solvers, such as veriT [3] and
SMT-RAT [4].

The opposite task of incorporating SAT- or SMT-solving techniques into a
computer algebra system also has significant prior art. One such example from
the computer algebra system Redlog is the integration of learning strategies from
CDCL-based SMT solving into real quantifier elimination [5].

Maple[6] is a computer algebra system originally developed by members of the
Symbolic Computation Group in the Faculty of Mathematics at the University
of Waterloo. Since 1988, it has been developed and commercially distributed
by Maplesoft (formally, Waterloo Maple Inc.), a company based in Waterloo,
Ontario, Canada, with ongoing contributions by affiliated research centres. The
core Maple language is implemented in a kernel written in C++ and much of
the computational library is written in the Maple language, though it employs
external libraries for special-purpose computations such as LAPACK and GMP.

The SMTLIB 2.0 [7] standard defines a language for writing terms and for-
mulas in a sorted version of first-order logic, specifying background theories and
logics, and interacting with SMT solvers in order to impose and retract assertions
and inquire about their satisfiability.

While Maple as a computer system generally focuses on obtaining a compact
general solution to a posed problem rather than a statement of satisfiability or a

satisfying witness, its core routines do make regular use of satisfiability queries
in the course of symbolic simplification.

An illustrative example can be found with the Maple command product. In
the evaluation of the expression product(f(n),n=a..b), the system seeks to

compute a symbolic formula for the product
∏b

n=a f(n). Among other steps, it
computes a set of roots of f(n) and, if neither a nor b is infinite, checks whether
there exists a root r such that r is an integer and a ≤ r ≤ b. If so, it returns
zero as the result of the product. (Similar logic is applied if either of a or b is
infinite.)

This is an example of what is essentially an SMT instance appearing as a
sub-problem in the course of symbolic computation. Many examples of such
queries may be found in the Maple library, frequently as universally-quantified
statements: e.g. apply a certain transformation, provided a specified condition
holds universally. It is hoped that dispatching such satisfiability queries to an
external SMT solver could offer performance improvements and permit a broader
class of such queries to be decided, compared with analogous existing tools in
Maple.

2 Challenges

The Maple language is loosely-typed and permits identifiers which have not been
previously defined to be freely used in algebraic expressions, with the under-
standing that such identifiers represent symbolic indeterminates. Maple there-
fore places no requirements on the user to provide an advance declaration of the
mathematical domain associated with or theory underlying the input expression.
Maple does possess a facility with which additional properties about symbols
may be specified using the commands assume or assuming. In general however
the effective interpretation of symbols is imposed by the particular command
being invoked: for example, coeffs(x2̂+3,x) interprets x as a transcendental
element while evalc((x+I)2̂) interprets x as a real number.

This overall flexibility presents a significant obstacle to translating an arbi-
trary algebraic expression from Maple to SMT-LIB: we must either oblige a user
to specify the SMT-LIB logic underlying the expression and the type of each
symbol explicitly, or attempt to detect them.

3 Results

We present a work-in-progress Maple package, SMTLIB, designed to facilitate
interaction with an SMT solver supporting the SMT-LIB standard. This package
offers three commands: ToString, Satisfiable, and Satisfy.

The first of these, ToString, accepts a Maple expression and returns a string
output containing an SMT-LIB 2.0 script. By default, this simply asserts the
truth of the expression corresponding to the Maple input and requests a satisfia-
bility check (i.e. (check-sat)). It does not explicitly invoke an SMT solver, but

merely returns the input which would be sent to one if Satisfiable or Satisfy
were invoked.

The SMT-LIB logic may be explicitly specified or inferred. In the following
example, we ask about the satifiability of x2+1 = 0 while instructing ToString to
use the SMT-LIB logic QF LRA (quantifier-free linear real arithmetic), implicitly
forcing the variable x to be real. (Note that the input line is preceded by > and
output lines follow afterwards.)

> SMTLIB:-ToString(x^2+1=0, logic="QF_LRA");

"(set-logic QF_LRA)

(declare-fun x () Real)

(assert (= (+ (* x x) 1) 0))

(check-sat)

(exit)"

In the event that the logic is not specified, ToString will attempt to choose
the “smallest” SMT-LIB logic in which the input can be represented, according
to the partial order on SMT-LIB logics described in [8]. That is it will choose
a logic which is sufficient to represent the input expression, and which will be a
sub-logic of any logic in which the input can be represented.

If we repeat the previous command while leaving the logic unspecified, ToString
defaults to using the logic QF NIA (quantifier-free nonlinear integer arithmetic)
because that is the minimal logic in which both the integer addition and the
square term can be represented.

> SMTLIB:-ToString(x^2+1=0);

"(set-logic QF_NIA)

(declare-fun x () Int)

(assert (= (+ (* x x) 1) 0))

(check-sat)

(exit)"

The Satisfiable and Satisfy commands simply generate SMT-LIB scripts
(which request a satisfiability check and a satisfying witness, respectively) and
dispatch the query to an SMT solver. By specifying the path to the executable for
the SMT solver, an arbitrary SMT-LIB compliant solver may be used, though the
default implementation uses Z3 [9]. The output of the SMT solver is parsed and
returned as a corresponding Maple object: a Boolean result (for Satisfiable)
or either a satisfying assignment or the value NULL.

The following examples first confirm that a satisfying assignment exists and
then returns a satisfying assignment for the equation w3+x3 = y3+z3 in positive
integers where w 6= y, w 6= z:

> SMTLIB:-Satisfiable({w^3+x^3=y^3+z^3, w>0,x>0,y>0,z>0,w<>y,w<>z},

logic="QF_NIA");

true

> SMTLIB:-Satisfy({w^3+x^3=y^3+z^3, w>0,x>0,y>0,z>0,w<>y,w<>z},

logic="QF_NIA");

{w = 10, x = 9, y = 12, z = 1}

4 Conclusion

The SMTLIB Maple package presents a concrete example of a computer algebra
system effectively harnessing the power of an SMT solver. The fact that its
interface is sufficiently generic to be uncoupled from any particular SMT solver
stands as testimony to the benefit of the widespread adoption of the SMT-LIB
standard by implementors of SMT solvers.

This implementation nevertheless currently leaves a considerable portion of
the functionality defined in the SMT-LIB 2 standard unexploited, including def-
inition of new theories and use of the command language for interacting with
assertions via stack push/pop operations.

5 Future Work

The inclusion of the SMTLIB package in Maple provides a facility for users
explicitly interested in interacting with an SMT solver. In future, we aim to
examine the utility of using as a general-purpose tool for solving SMT instances
which arise during evaluation of symbolic expressions.

An important factor in this assessment will be whether this implementation
offers better performance and returns definite solutions (i.e. not FAIL) for a
larger class of such queries than existing tools in Maple.

References

1. E. Ábrahám, J. Abbott, B. Becker, A.M. Bigatti, M. Brain, B. Buchberger, A.
Cimatti, J.H. Davenport M. England, P. Fontaine, S. Forrest, A. Griggio, D. Kroen-
ing, W.M. Seiler, and T. Sturm. SC2: Satisfiability Checking Meets Symbolic Com-
putation. In: M. Kohlhase, M. Johansson, B. Miller, L. de Moura, F. Tompa, eds.,
Intelligent Computer Mathematics (Proceedings of CICM 2016), pp. 28-43, (Lecture
Notes in Computer Science, 9791). Springer International Publishing, 2016.

2. Erika Ábrahám. 2015. Building Bridges between Symbolic Computation and Sat-
isfiability Checking. In Proceedings of the 2015 ACM on International Symposium
on Symbolic and Algebraic Computation (ISSAC ’15). ACM, New York, NY, USA,
1-6. DOI: https://doi.org/10.1145/2755996.2756636

3. Thomas Bouton, Diego Caminha B. de Oliveira, David Déharbe, Pascal
Fontaine. (2009). veriT: An Open, Trustable and Efficient SMT-Solver. 151-156.
https://doi.org/10.1007/978-3-642-02959-2 12.

4. Florian Corzilius, Ulrich Loup, Sebastian Junges, and Erika Ábrahám. 2012. SMT-
RAT: an SMT-compliant nonlinear real arithmetic toolbox. In Proceedings of the
15th international conference on Theory and Applications of Satisfiability Test-
ing (SAT’12), Alessandro Cimatti and Roberto Sebastiani (Eds.). Springer-Verlag,
Berlin, Heidelberg, 442-448. http://dx.doi.org/10.1007/978-3-642-31612-8 35.

5. Konstantin Korovin, Marek Kosta, Thomas Sturm. Towards Conflict-Driven Learn-
ing for Virtual Substitution. Vladimir P. Gerdt and Wolfram Koepf and Werner M.
Seiler and Evgenii V. Vorozhtsov. Computer Algebra in Scientific Computing - 16th
International Workshop, CASC 2014, 2014, Warsaw, Poland. Springer, 8660, pp.256-
270, 2014, Lecture Notes in Computer Science. ¡http://dx.doi.org/10.1007/978-3-
319-10515-4 19¿.

6. Maple Programming Guide, Toronto: Maplesoft, a division of Waterloo Maple Inc.,
2005-2016.

7. Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability Modulo The-
ories Library (SMT-LIB), http://www.smt-lib.org, 2016.

8. Logics in SMT-LIB, http://smtlib.org/logics.shtml.
9. de Moura, L. M., and Bjørner, N. Z3: an efficient SMT solver. In TACAS (2008),

vol. 4963 of Lecture Notes in Computer Science, Springer, pp. 337340. Z3 is available
at https://github.com/Z3Prover/z3.

