Nonlinear Polynomials, Interpolants and Invariant Generation for System Analysis*

Deepak Kapur

Dept. of Computer Science, University of New Mexico, USA, kapur@cs.unm.edu

Abstract. Invariant properties at various program locations play a critical role in enhancing confidence in the reliability of software, hardware and hybrid systems. While there has recently been considerable interest in researching heuristics for generating loops invariants, almost all developments have focused on generating invariants typically handled using SMT solvers including propositional formulas, difference and octagonal formulas and linear formulas. While we have been investigating methods based on symbolic computation algorithms including Gröbner basis and approximate quantifier elimination for over a decade (see [1, 7, 8, 11, 4, 5, 9, 10, 6, 13, 12, 2, 3] for some of our papers), the SMT and CAV community have only recently started considering nonlinear polynomial invariants since many programs, especially linear filters, hybrid systems, and other applications, need nonlinear invariants for analysis of their behavior.

We present an overview of our research with a focus on our most recent work on nonlinear invariant [2] and nonlinear interpolant generation [3] from the perspective of their role in software and hybrid system analysis. Our approach is in sharp contrast to some recent approaches in which nonlinear polynomials are approximated using linear inequalities and symbolic-numeric techniques. We will outline problems and challenges faced by the SMT community for incorporate nonlinear reasoning in their tools as well as issues we encounter in our research.

References


* This research has been partially supported by the NSF awards CCF-1248069 and DMS-1217054 as well as a grant for Visiting Professorship for Senior International Scientists, the Chinese Academy of Sciences.


