The Lean Theorem Prover

Jeremy Avigad

Department of Philosophy and
Department of Mathematical Sciences
Carnegie Mellon University

June 29, 2017
Formal and Symbolic Methods

Computers open up new opportunities for mathematical reasoning.

Consider three types of tools:

- computer algebra systems
- automated theorem provers and reasoners
- proof assistants

They have different strengths and weaknesses.
Computer algebra systems are widely used.

Strengths:
- They are easy to use.
- They are useful.
- They provide instant gratification.
- They support interactive use, exploration.
- They are programmable and extensible.
Computer Algebra Systems

Weaknesses:

• The focus is on symbolic computation, rather than abstract definitions and assertions.
• They are not designed for reasoning or search.
• The semantics is murky.
• They are sometimes inconsistent.
Automated reasoning systems include:

- theorem provers
- constraint solvers

SAT solvers, SMT solvers, and model checkers combine the two.

Strengths:

- They provide powerful search mechanisms.
- They offer bush-button automation.
Weaknesses:

- They do not support interactive exploration.
- Domain general automation often needs user guidance.
- SAT solvers and SMT solvers work with less expressive languages.
Interactive Theorem Provers

Interactive theorem provers includes systems like HOL light, HOL4, Coq, Isabelle, PVS, ACL2, . . .

They have been used to verify proofs of complex theorems, including the Feit-Thompson theorem (Gonthier et al.) and the Kepler conjecture (Hales et al.).

Strengths:

- The results scale.
- They come with a precise semantics.
- Results are fully verified.
Interactive Theorem Provers

Weaknesses:

- Formalization is slow and tedious.
- It requires a high degree of commitment and expertise.
- It doesn’t promote exploration and discovery.
The Lean project aims to combine the best all these worlds.

I will discuss:

- the Lean project
- metaprogramming in Lean
- a connection between Lean and Mathematica
- automation in Lean
The Lean Theorem Prover

Lean is a new interactive theorem prover, developed principally by Leonardo de Moura at Microsoft Research, Redmond.

Lean is open source, released under a permissive license, Apache 2.0.

See http://leanprover.github.io.
The Lean Theorem Prover

Why develop a new theorem prover?

- It provides a fresh start.
- We can incorporate the best ideas from existing provers, and try to avoid shortcomings.
- We can craft novel engineering solutions to design problems.
The Lean Theorem Prover

The aim is to bring interactive and automated reasoning together, and build

- an interactive theorem prover with powerful automation
- an automated reasoning tool that
 - produces (detailed) proofs,
 - has a rich language,
 - can be used interactively, and
 - is built on a verified mathematical library
- a programming environment in which one can
 - compute with objects with a precise formal semantics,
 - reason about the results of computation,
 - extend the capabilities of Lean itself,
 - write proof-producing automation
The Lean Theorem Prover

Overarching goals:

- Verify hardware, software, and hybrid systems.
- Verify mathematics.
- Support reasoning and exploration.
- Support formal methods in education.
- Create an eminently powerful, usable system.
- Bring formal methods to the masses.
History

- The project began in 2013.
- Lean 2 was “announced” in the summer of 2015.
- A major rewrite was undertaken in 2016.
- The new version, Lean 3 is in place.
- A standard library and automation are under development.
- HoTT development is ongoing in Lean 2.
People

Code base: Leonardo de Moura, Gabriel Ebner, Sebastian Ullrich, Jared Roesch, Daniel Selsam

Libraries: Jeremy Avigad, Floris van Doorn, Leonardo de Moura, Robert Lewis, Gabriel Ebner, Johannes Hölzl, Mario Carneiro

Past project members: Soonho Kong, Jakob von Raumer

Contributors: Assia Mahboubi, Cody Roux, Parikshit Khanna, Ulrik Buchholtz, Favonia (Kuen-Bang Hou), Haitao Zhang, Jacob Gross, Andrew Zipperer, Joe Hurd
The Lean Theorem Prover

Notable features:

- based on a powerful dependent type theory
- written in C++, with multi-core support
- small trusted kernel with independent type checkers
- supports constructive reasoning, quotients and extensionality, and classical reasoning
- elegant syntax and a powerful elaborator
- well-integrated type class inference
- a function definition system compiles structural / nested / mutual / well-founded recursive definitions down to primitives
- flexible means of writing declarative proofs and tactic-style proofs
- server support for editors, with proof-checking and live information
The Lean Theorem Prover

- editor modes for Emacs and VSCode
- a javascript version runs in a browser
- a fast bytecode interpreter for evaluating computable definitions
- a powerful framework for metaprogramming via a monadic interface to Lean internals
- profiler and roll-your-own debugger
- simplifier with conditional rewriting, arithmetic simplification
- SMT-state extends tactics state with congruence closure, e-matching
- online documentation and courseware
- enthusiastic, talented people involved
Lean is based on a version of the Calculus of Inductive Constructions, with:

- a hierarchy of (non-cumulative) universes, with a type Prop of propositions at the bottom
- dependent function types (Pi types)
- inductive types (à la Dybjer)

Semi-constructive axioms and constructions:

- quotient types (the existence of which imply function extensionality)
- propositional extensionality

A single classical axiom:

- choice
Defining Functions

Lean’s primitive recursors are a very basic form of computation.

To provide more flexible means of defining functions, Lean uses an *equation compiler*.

It does pattern matching:

```lean
def list_add {α : Type u} [has_add α] : 
  list α → list α → list α 
| [] _ := []
| _ [] := []
| (a :: l) (b :: m) := (a + b) :: list_add l m
```

#eval list_add [1, 2, 3] [4, 5, 6, 6, 9, 10]
Defining Functions

It handles arbitrary structural recursion:

```plaintext
def fib : ℕ → ℕ
| 0    := 1
| 1    := 1
| (n+2) := fib (n+1) + fib n
```

#eval fib 10000

It detects impossible cases:

```plaintext
def vector_add [has_add α] :
    Π {n}, vector α n → vector α n → vector α n
| ._ nil               nil     := nil
| ._ (@cons ._ _ a v) (cons b w) := cons (a + b) (vector_add v w)
```

#eval vector_add (cons 1 (cons 2 (cons 3 nil)))
(cons 4 (cons 5 (cons 6 nil)))
Defining Inductive Types

Nested and mutual inductive types are also compiled down to the primitive versions:

```
mutual inductive even, odd
  with even : N → Prop
    | even_zero : even 0
    | even_succ : ∀ n, odd n → even (n + 1)
  with odd : N → Prop
    | odd_succ : ∀ n, even n → odd (n + 1)

inductive tree (α : Type)
  | mk : α → list tree → tree
```
Defining Functions

The equation compiler handles nested inductive definitions and mutual recursion:

```lean
inductive term
| const : string → term
| app : string → list term → term

open term

mutual def num_consts, num_consts_lst
with num_consts : term → nat
| (term.const n) := 1
| (term.app n ts) := num_consts_lst ts
with num_consts_lst : list term → nat
| [] := 0
| (t::ts) := num_consts t + num_consts_lst ts

def sample_term := app "f" [app "g" [const "x"], const "y"]

#eval num_consts sample_term
```
Defining Functions

We can do well-founded recursion:

```lean
def div : nat → nat → nat
| x y :=
  if h : 0 < y ∧ y ≤ x then
    have x - y < x, from ...,
    div (x - y) y + 1
  else
    0
```

Here is Ackermann’s function:

```lean
def ack : nat → nat → nat
| 0   y := y+1
| (x+1) 0 := ack x 1
| (x+1) (y+1) := ack x (ack (x+1) y)
```
Type class resolution is well integrated.

```lean
class semigroup (α : Type u) extends has_mul α :=
(mul_assoc : ∀ a b c, a * b * c = a * (b * c))

class monoid (α : Type u) extends semigroup α, has_one α :=
(one_mul : ∀ a, 1 * a = a) (mul_one : ∀ a, a * 1 = a)

def pow {α : Type u} [monoid α] (a : α) : ℕ → α
| 0 := 1
| (n+1) := a * pow n

infix `^`: pow
```
@[simp] theorem pow_zero (a : α) : a^0 = 1 := by unfold pow

theorem pow_succ (a : α) (n : ℕ) : a^(n+1) = a * a^n :=
by unfold pow

theorem pow_mul_comm' (a : α) (n : ℕ) : a^n * a = a * a^n :=
by induction n with n ih; simp [*], pow_succ

theorem pow_succ' (a : α) (n : ℕ) : a^(n+1) = a^n * a :=
by simp [pow_succ, pow_mul_comm']

theorem pow_add (a : α) (m n : ℕ) : a^(m + n) = a^m * a^n :=
by induction n; simp [*, pow_succ', nat.add_succ]

theorem pow_mul_comm (a : α) (m n : ℕ) :
a^m * a^n = a^n * a^m :=
by simp [(pow_add a m n).symm, (pow_add a n m).symm]

instance : linear_ordered_comm_ring int := ...
Proofs can be written as terms, or using tactics.

def gcd : nat → nat → nat
| 0 y := y
| (succ x) y := have y % succ x < succ x,
 from mod_lt _ $ succ_pos _,
 gcd (y % succ x) (succ x)

theorem gcd_dvd_left (m n : ℕ) : gcd m n | m := ...

theorem gcd_dvd_right (m n : ℕ) : gcd m n | n := ...

theorem dvd_gcd {m n k : ℕ} : k | m → k | n → k | gcd m n := ...
Proof Language

```lean
theorem gcd_comm (m n : \mathbb{N}) : gcd m n = gcd n m :=
dvd_antisymm
  (have h1 : gcd m n | n, from gcd_dvd_right m n,
   have h2 : gcd m n | m, from gcd_dvd_left m n,
   show gcd m n | gcd n m, from dvd_gcd h1 h2)
  (have h1 : gcd n m | m, from gcd_dvd_right n m,
   have h2 : gcd n m | n, from gcd_dvd_left n m,
   show gcd n m | gcd m n, from dvd_gcd h1 h2)

theorem gcd_comm1 (m n : \mathbb{N}) : gcd m n = gcd n m :=
dvd_antisymmm
  (dvd_gcd (gcd_dvd_right m n) (gcd_dvd_left m n))
  (dvd_gcd (gcd_dvd_right n m) (gcd_dvd_left n m))
```
Proof Language

\textbf{Theorem gcd\textsubscript{comm}} \ (m \ n : \ \mathbb{N}) \ : \ \gcd \ m \ n = \gcd \ n \ m :=

suffices \ \forall \ \{m \ n\}, \ \gcd \ m \ n \ | \ \gcd \ n \ m,

\quad \text{from (dvd\textsubscript{antisymmm} this this),}

assume \ m \ n \ : \ \mathbb{N},

\text{show} \ \gcd \ m \ n \ | \ \gcd \ n \ m,

\quad \text{from dvd\textsubscript{gcd} (gcd\textsubscript{dvd_right} m n) (gcd\textsubscript{dvd_left} m n)}

\textbf{Theorem gcd\textsubscript{comm2}} \ (m \ n : \ \mathbb{N}) \ : \ \gcd \ m \ n = \gcd \ n \ m :=

\text{begin}

\quad \text{apply dvd\textsubscript{antisymmm},}

\quad \{ \text{apply dvd\textsubscript{gcd}, apply gcd\textsubscript{dvd_right}, apply gcd\textsubscript{dvd_left} } \},

\quad \text{apply dvd\textsubscript{gcd}, apply gcd\textsubscript{dvd_right}, apply gcd\textsubscript{dvd_left}}

\text{end}

\textbf{Theorem gcd\textsubscript{comm3}} \ (m \ n : \ \mathbb{N}) \ : \ \gcd \ m \ n = \gcd \ n \ m :=

\text{begin}

\text{apply dvd\textsubscript{antisymmm},}

\{ \text{apply dvd\textsubscript{gcd}, apply gcd\textsubscript{dvd_right}, apply gcd\textsubscript{dvd_left} } \},

\text{apply dvd\textsubscript{gcd}, apply gcd\textsubscript{dvd_right}, apply gcd\textsubscript{dvd_left}}

\text{end}
Proof Language

```lean
theorem gcd_comm4 (m n : ℕ) : gcd m n = gcd n m :=
begin
  apply dvd_antisymm,
  { have : gcd m n | n, apply gcd_dvd_right,
    have : gcd m n | m, apply gcd_dvd_left,
    show gcd m n | gcd n m, apply dvd_gcd; assumption },
  { have : gcd n m | m, apply gcd_dvd_right,
    have : gcd n m | n, apply gcd_dvd_left,
    show gcd n m | gcd m n, apply dvd_gcd; assumption },
end
```

```lean
theorem gcd_comm5 (m n : ℕ) : gcd m n = gcd n m :=
by apply dvd_antisymm;
  {apply dvd_gcd, apply gcd_dvd_right, apply gcd_dvd_left}
```
attribute [ematch] gcd_dvd_left gcd_dvd_right dvd_gcd
 dvd_antisymmm

theorem gcd_comm₆ (m n : ℕ) : gcd m n = gcd n m :=
by finish

theorem gcd_comm₇ (m n : ℕ) : gcd m n = gcd n m :=
begin [smt] eblast end
Lean as a Programming Language

Lean implements a fast bytecode evaluator:

- It uses a stack-based virtual machine.
- It erases type information and propositional information.
- It uses eager evaluation (and supports delayed evaluation with thunks).
- You can use anything in the Lean library, as long as it is not noncomputable.
- The machine substitutes native nats and ints (and uses GMP for large ones).
- It substitutes a native representation of arrays.
- It has a profiler and a debugger.
- It is really fast.

Compilation to native code is under development.
Lean as a Programming Language

#eval 3 + 6 * 27
#eval if 2 < 7 then 9 else 12
#eval [1, 2, 3] ++ 4 :: [5, 6, 7]
#eval "hello " ++ "world"
#eval tt && (ff || tt)

def binom : ℕ → ℕ → ℕ
| _ 0 := 1
| 0 (_+1) := 0
| (n+1) (k+1) := if k > n then 0
| else if n = k then 1
| else binom n k + binom n (k+1)

#eval (range 7).map $ λ n, (range (n+1)).map $ λ k, binom n k
Lean as a Programming Language

section sort
universe variable u
parameters \(\{ \alpha : \text{Type} \ u \} \) (r : \(\alpha \to \alpha \to \text{Prop} \)) [decidable_rel r]
local infix \(\preceq \) : 50 := r

def ordered_insert (a : \(\alpha \)) : list \(\alpha \) → list \(\alpha \)
| [] := [a]
| (b :: l) := if a \(\preceq \) b then a :: (b :: l)
else b :: ordered_insert l

def insertion_sort : list \(\alpha \) → list \(\alpha \)
| [] := []
| (b :: l) := ordered_insert b (insertion_sort l)

end sort

#eval insertion_sort (\(\lambda \) m n : \(\mathbb{N} \), m \(\leq \) n)
[5, 27, 221, 95, 17, 43, 7, 2, 98, 567, 23, 12]
Lean as a Programming Language

There are algebraic structures that provides an interface to terminal and file I/O.

Users can implement their own, or have the virtual machine use the “real” one.

At some point, we decided we should have a package manager to manage libraries and dependencies.

Gabriel Ebner wrote one, in Lean.
Lean as a Metaprogramming Language

Question: How can one go about writing tactics and automation?

Various answers:

- Use the underlying implementation language (ML, OCaml, C++, ...).
- Use a domain-specific tactic language (LTac, MTac, Eisbach, ...).
- Use reflection (RTac).
Metaprogramming in Lean

Our answer: go meta, and use the object language.

(MTac, Idris, and now Agda do the same, with variations.)

Advantages:

- Users don’t have to learn a new programming language.
- The entire library is available.
- Users can use the same infrastructure (debugger, profiler, etc.).
- Users develop metaprograms in the same interactive environment.
- Theories and supporting automation can be developed side-by-side.
Metaprogramming in Lean

The method:

- Add an extra (meta) constant: `tactic_state`.
- Reflect expressions with an `expr` type.
- Add (meta) constants for operations which act on the tactic state and expressions.
- Have the virtual machine bind these to the internal representations.
- Use a tactic monad to support an imperative style.

Definitions which use these constants are clearly marked `meta`, but they otherwise look just like ordinary definitions.
meta def find : expr → list expr → tactic expr
| e [] := failed
| e (h :: hs) :=
 do t ← infer_type h,
 (unify e t >> return h) <|> find e hs

meta def assumption : tactic unit :=
do { ctx ← local_context,
 t ← target,
 h ← find t ctx,
 exact h }
<|> fail "assumption tactic failed"

lemma simple (p q : Prop) (h₁ : p) (h₂ : q) : q :=
 by assumption
Summary:

- We extend the object language with a type that reflects an internal tactic state, and expose operations that act on the tactic state.
- We reflect the syntax of dependent type theory, with mechanisms to support quotation and pattern matching over expressions.
- We use general support for monads and monadic notation to define the tactic monad and extend it as needed.
- We have an extensible way of declaring attributes and assigning them to objects in the environment (with caching).
- We can easily install tactics written in the language for use in interactive tactic environments.
- We have a profiler and a debugging API.
The metaprogramming API includes a number of useful things, like an efficient implementation of red-black trees.

Tactics are fallible – they can fail, or produce expressions that are not type correct.

Every object is checked by the kernel before added to the environment, so soundness is not compromised.
Metaprogramming in Lean

Most of Lean’s tactic framework is implemented in Lean.

Examples:

- The usual tactics: assumption, contradiction, ...
- Tactic combinators: repeat, first, try, ...
- Goal manipulation tactics: focus, ...
- A procedure which establishes decidable equality for inductive types.
- A transfer method (Hölzl).
- Translations to/from Mathematica (Lewis).
- A full-blown superposition theorem prover (Ebner).

The method opens up new opportunities for developing theories and automation hand in hand.
Having a programming language built into a theorem prover is incredibly flexible.

We can:

- Write custom automation.
- Develop custom tactic states (with monad transformers) and custom interactive frameworks.
- Install custom debugging routines.
- Write custom parser extensions.
Lean and the Outside World

Metaprogramming opens up opportunities for interacting with other systems.

We hope to call external tools from within Lean:

- automated theorem provers
- SMT solvers (such as Z3, CVC4)
- computer algebra systems

Ideally, the results will be verified in Lean, but we can also choose to trust them.

Interactivity is a plus.

For example, we can preprocess data in Lean before sending it out.
Lean and Computer Algebra Systems

Robert Y. Lewis has implemented a prototype connection to Mathematica.

- Lean expressions are sent to Mathematica, with instructions.
- Mathematica interprets the expressions and carries out the instructions.
- Mathematica results are sent back to Lean.
- Lean interprets the results.
- Lean can then do whatever it wants with them, such as verify correctness.

Care has to be taken to preserve enough information to survive the round trip.
Lean and Computer Algebra Systems

An example:

- Lean sends Mathematica a polynomial.
- Mathematica factors it and returns the list of factors.
- Lean verifies that the product of the factors is equal to the original.
Consider $x + x$. In Lean:

\[
\text{app (app (app (app (const "add" [0]))}
\quad \text{(const "real" []))}
\quad \text{(const "real.has_add" [])) X X}
\]

where

\[
X := \text{local_const "17.27" "x" "bi" (const "real" [])},
\]
This is sent to Mathematica:

\[
\text{LeanApp[LeanApp[LeanApp[
 LeanApp[LeanConst["add", \{0\}],
 LeanConst["real", \{\}]],
 LeanConst["real.has_add", \{\}]], X], X].}
\]

where

\[
X := \text{LeanLocal["17.27", "x", "bi",}
\]

\[
 \text{LeanConst["real", \{\}]}]
\]

Procedures written in Mathematica interpret add but preserve X.
With luck, $1 - 2x + x^2$ gets translated to

```
Plus[1, Times[-2, X], Power[X, 2]]
```

where

```
X := LeanLocal["17.27", "x", "bi",
              LeanConst["real",{}}]]
```

Applying Factor produces $Power[Plus[-1, X], 2]$.

The result gets sent back to Lean and interpreted there.
Lean and Computer Algebra Systems

Sample applications:

- Factoring integers.
- Factoring polynomials.
- Matrix decompositions.
- Verifying linear arithmetic (via Farkas witnesses).
- Verifying primality.
- Quickchecking theorems.
- Axiomatizing bounds on expressions that are hard to compute.

The last two require trust, whereas the others can be checked.
In addition to the metaprogramming language, native automation is showing signs of life:

- A term rewriter / simplifier.
- An SMT state extending the tactic state, with:
 - congruence closure
 - E-matching
 - unit propagation
 - special handling for AC operations
The simplifier

```lean
def append : list α → list α → list α
| [] l := l
| (h :: s) t := h :: (append s t)

def concat : list α → α → list α
| [] a := [a]
| (b::l) a := b :: concat l a

@[simp] lemma append_assoc (s t u : list α) :
  s ++ t ++ u = s ++ (t ++ u) :=
by induction s; simph

lemma append_ne_nil_of_ne_nil_left (s t : list α) :
  s ≠ [] → s ++ t ≠ nil :=
by induction s; intros; contradiction

@[simp] lemma concat_eq_append (a : α) (l : list α) :
  concat l a = l ++ [a] :=
by induction l; simph [concat]
```
Lean has an SMT state that extends the usual tactic state. It supports:

- congruence closure
- unit propagation
- ematching
example (a b c : α) : a = b → p (a + c) → p (c + b) :=
begin [smt]
 intros
end

example (p q r : Prop) : p ∧ (q ∨ r) → (p ∧ q) ∨ (p ∧ r) :=
begin [smt]
 intros
end
example (p q : Prop) :
 (p \lor q) \rightarrow (p \lor \neg q) \rightarrow (\neg p \lor q) \rightarrow p \land q :=
begin [smt]
 intros h1 h2 h3,
 destruct h1
end

e.example (p q : Prop) : p \lor q \rightarrow p \lor \neg q \rightarrow \neg p \lor q \rightarrow p \land q :=
begin [smt]
 intros,
 by_cases p
end
Conclusions

To summarize, Lean implements an axiomatic framework with a small trusted kernel, a computational interpretation, and a precise semantics.

- It is an interactive theorem prover.
- It is a programming language.
- It is also a metaprogramming language.
- It has native automation (still under development).
- It can interact with external tools.

This provides a powerful framework for supporting mathematical reasoning.
Conclusions

Shankar: “We are in the golden age of metamathematics.”

Formal methods will have a transformative effect on mathematics.

Computers change the kinds of proofs that we can discover and verify.

In other words, they enlarge the scope of what we can come to know.

It will take clever ideas, and hard work, to understand how to use them effectively.

But it’s really exciting to see it happen.
References

Documentation, papers, and talks on are leanprover.github.io.

There are various talks on my web page.