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Outline
I Ideal-theoretic approach for generating nonlinear polynomial

equalities as invariants.

I Quantifier Elimination Approach for Generating (Loop)
Invariants - Review with examples.

I Geometric and Local Quantifier Elimination Heuristic

I Octagonal Invariants - simple Convex Linear Constraints
I O(k ∗ n2) algorithm – strongest invariant, k:the number of

program paths and n: program variables
I Disjunctive Linear Invariants – max and min constraints

I Termination analysis using templates
I Interpolant generation using quantifier elimination
I Generalization of IC 3, particularly showing completeness.
I Saturation based approach for generating inductive invariants

– computing abductors
I Complexity barriers – localization (exploiting structure of

verification conditions) and geometric heuristics relating
preconditions vs post conditions.

I Challenges for symbolic computation community.
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Invariants and Program Verification

I Building reliable and safe software is critical because of its use
everywhere, especially in critical applications.

I Static analysis of software plays an important role. Examples
are type checking, array bound check, null pointer check,
ensuring behavioral specification, etc.

I Automation and scalability are critical for success.
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Invariants: Integer Square Root

Example

x := 1 , y := 1 , z := 0 ;
w h i l e ( x <= N) {

x := x + y + 2 ;
y := y + 2 ;
z := z + 1

}
r e t u r n z

x = (z + 1)2 is a loop invariant

Explore methods that can generate (strong) loop invariants (useful
program properties) automatically for a large class of programs
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Two Approaches for Generating Loop Invariants
Automatically

1. Ideal-Theoretic Methods

I properties of programs specified by a conjunction of
polynomial equations.

I associated with every program location is an invariant
(radical) ideal.

I Semantics of program constructs as ideal theoretic (algebraic
varieties) operations – implemented using Gröbner basis
computations.

I Existence of a finite basis ensured by Hilbert’s basis condition.
I approximations and fixed point computation to generate such

ideals.

Papers with Enric Rodŕıguez-Carbonell in ISSAC (2004), SAS
(2004), ICTAC (2004), Science of Programming (2007), Journal of
Symbolic Computation (2007)
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Papers with Enric Rodŕıguez-Carbonell in ISSAC (2004), SAS
(2004), ICTAC (2004), Science of Programming (2007), Journal of
Symbolic Computation (2007)



2. Quantifier-Elimination of Program Variables from Parameterized

Formulas

Papers in ACA-2004, Journal of Systems Sciences and
Complexity-2006

Geometric and Local Heuristics for Quantifier Elimination for
Automatically Generating Octagonal Invariants

Papers in TAMC (2012), McCuneMemorial (2013).

Interplay of Computational Logic and Algebra
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Generating Loop Invariant: Approach
I Guess/fix the shape of invariants of interest at various

program locations with some parameters which need to be
determined.

I Here is an illustration of generation of nonlinear invariants.
I : A x2 + B y2 + C z2 + D xy + E xz + F yz + G x +

H y + J z + K = 0.
I Generate verification conditions using the hypothesized

invariants from the code.

I VC1: At first possible entry of the loop (from initialization):

A + B + D + G + H + K = 0.
I VC2: For every iteration of the loop body:

(I (x , y , z) ∧ x ≤ N) =⇒ I (x + y + 2, y + 2, z + 1).

I Using quantifier elimination, find constraints on parameters
A,B,C ,D,E ,F ,G ,H, J,K which ensure that the verification
conditions are valid for all possible program variables.
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Quantifier Elimination from Verification Conditions

Considering VC2:

I ( A x2+B y 2+C z2+D xy+E xz+F yz+G x+H y+J z+K = 0) =⇒
( A (x+y+2)2+B (y+2)2+C (z+1)2+D (x+y+2)(y+2)+E (x+y+
2)(z+1)+F (y+2)(z+1)+G (x+y+2)+H (y+2)+J (z+1)+K = 0)

I Expanding the conclusion gives:
Ax2 + (A+ B + D)y 2 + cz2 + (D + 2A)xy + Exz + (E + F )yz + (G +
4A+ 2D + E)x + (H + 4A+ 4B + 4D + E + F + G)y + (J + 2C + 2E +
2F )z + (4A+ 4B + C + 4D + 2E + 2F + 2G + 2H + J + K) = 0

I Simplifying using the hypothesis gives:
(A+D)y 2 + 2Axy + Eyz + (4A+ 2D + E)x + (4A+ 4B + 4D + E + F +
G)y+(2C+2E+2F )z+(4A+4B+C+4D+2E+2F+2G+2H+J) = 0

I Since this should be 0 for all values of x , y , z : we have:
A+ D = 0;A = 0;E = 0 which implies D = 0; using these gives:
2C + 2F = 0 which implies C = −F ; using all these:
G = −4B − F , H = −G − K − B and J = −2B − F + 2K .
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Generating the Strongest Invariant
I Constraints on parameters are:

C = −F , J = −2B − F + 2K , G = −4B − F , H = 3B + F −K .

I Every value of parameters satisfying the above constraints
leads to an invariant (including the trivial invariant true when
all parameter values are 0).

I 7 parameters and 4 equations, so 3 independent parameters,
say B,F ,K . Making every independent parameter 1
separately with other independent parameters being 0, derive
values of dependent parameters.

I K = 1,H = −1, J = 2 gives −y + 2z + 1 = 0.
I F = 1,C = −1, J = −1,G = −1,H = 1 gives
−z2 + yz − x + y − z − 0.

I B = 1, J = −2,G = −4,H = 3 gives y2 − 4x + 3y − 2z = 0.

I The most general invariant describing all invariants of the
above form is a conjunction of:

y = 2z + 1; z2− yz + z + x − y = 0 y2− 2z − 4x + 3y = 0,
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Method for Automatically Generating Invariants by
Quantifier Elimination

I Hypothesize assertions, which are parametrized formulas, at
various points in a program.

I Typically entry of every loop and entry and exit of every
procedure suffice.

I Nested loops and procedure/function calls can be handled.

I Generate verification conditions for every path in the program
(a path from an assertion to another assertion including
itself).

I Depending upon the logical language chosen to write
invariants, approximations of assignments and test conditions
may be necessary.

I Find a formula expressed in terms of parameters eliminating
all program variables (using quantifier elimination).
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Quality of Invariants

Soundness and Completeness

I Every assignment of parameter values which make the formula
true, gives an inductive invariant.

I If no parameter values can be found, then invariants of
hypothesized forms may not exist. Invariants can be
guaranteed not to exist if no approximations are made, while
generating verification conditions.

I If all assignments making the formula true can be finitely
described, invariants generated may be the strongest of the
hypothesized form. Invariants generated are guaranteed to be
the strongest if no approximations are made, while generating
verification conditions.
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How to Scale this Approach

I Quantifier Elimination Methods typically do not scale up due
to high complexity even in this restricted case of ∃∀.

I Even for Presburger arithmetic, complexity is doubly
exponential in the number of quantifier alternations and triply
exponential in the number of quantified variables

I Output is huge and difficult to decipher.
I In practice, they often do not work (i.e., run out of memory or

hang).

I Linear constraint solving on rationals and reals (polyhedral
domain), while of polynomial complexity, has been found in
practice to be inefficient and slow, especially when used
repeatedly as in abstract interpretation approach [Miné]
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Making QE based Method Practical
I Identify (atomic) formulas and program abstractions resulting

in verification conditions with good shape and structure.

I Develop QE heuristics which exploit local structure of
formulas (e.g. two variables at a time) and geometry of state
space defined by formulas.

I Among many possibilities in a result after QE, identify those
most likely to be useful.

I Octagonal formulas : l ≤ ±x ± y ≤ h, a highly restricted
subset of linear constraints (at most two variables with
coefficients from {−1, 0, 1}).

I This fragment is the most expressive fragment of linear
arithmetic over the integers with a polynomial time decision
procedure.

I Max, Min formulas: max(±x − l ,±y − h), expressing
disjunction
((x − l ≥ y − h ∧ x − l ≥ 0) ∨ (y − h ≥ x − h ∧ y − h ≥ 0)).

I Combination of Octagonal and Max formulas.
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Octagonal Formulas

I Octagonal formulas over two variables have a fixed shape. Its
parameterization can be given using 8 parameters.

I Given n variables, the most general formula (after
simplification) is of the following form∧

i ,j( Octai ,j : ai ,j ≤ xi − xj ≤ bi ,j , ci ,j ≤ xi + xj ≤ di ,j
ei ≤ xi ≤ fi gj ≤ xj ≤ hj)

for every pair of variables xi , xj , where ai ,j , bi ,j , ci ,j , di ,j , ei , fi ,
gj , hj are parameters.

I Class of programs that can be analyzed are very restricted.
Still using octagonal constraints (and other heuristics),
ASTREE is able to successfully analyze hundreds of thousands
of lines of code of numerical software for array bound check,
memory faults, and related bugs.

I Algorithms used in ASTREE are of O(n3) complexity
(sometimes, O(n4)), where n is the number of variables (Miné,
2003).

I Goal: Performance of QE heuristic should be at least as good.
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2003).

I Goal: Performance of QE heuristic should be at least as good.



Octagonal Formulas

I Octagonal formulas over two variables have a fixed shape. Its
parameterization can be given using 8 parameters.

I Given n variables, the most general formula (after
simplification) is of the following form∧

i ,j( Octai ,j : ai ,j ≤ xi − xj ≤ bi ,j , ci ,j ≤ xi + xj ≤ di ,j
ei ≤ xi ≤ fi gj ≤ xj ≤ hj)

for every pair of variables xi , xj , where ai ,j , bi ,j , ci ,j , di ,j , ei , fi ,
gj , hj are parameters.

I Class of programs that can be analyzed are very restricted.
Still using octagonal constraints (and other heuristics),
ASTREE is able to successfully analyze hundreds of thousands
of lines of code of numerical software for array bound check,
memory faults, and related bugs.

I Algorithms used in ASTREE are of O(n3) complexity
(sometimes, O(n4)), where n is the number of variables (Miné,
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2003).

I Goal: Performance of QE heuristic should be at least as good.



Octagonal Formulas

I Octagonal formulas over two variables have a fixed shape. Its
parameterization can be given using 8 parameters.

I Given n variables, the most general formula (after
simplification) is of the following form∧

i ,j( Octai ,j : ai ,j ≤ xi − xj ≤ bi ,j , ci ,j ≤ xi + xj ≤ di ,j
ei ≤ xi ≤ fi gj ≤ xj ≤ hj)

for every pair of variables xi , xj , where ai ,j , bi ,j , ci ,j , di ,j , ei , fi ,
gj , hj are parameters.

I Class of programs that can be analyzed are very restricted.
Still using octagonal constraints (and other heuristics),
ASTREE is able to successfully analyze hundreds of thousands
of lines of code of numerical software for array bound check,
memory faults, and related bugs.

I Algorithms used in ASTREE are of O(n3) complexity
(sometimes, O(n4)), where n is the number of variables (Miné,
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A Simple Example

Example

x := 4 ; y := 6 ;
w h i l e ( x + y >= 0) do

i f ( y >= 6) then { x := −x ; y := y − 1 }
e l s e { x := x − 1 ; y := −y }

e n d w h i l e

VC0: I (4, 6)
VC1: (I (x , y) ∧ (x + y) ≥ 0 ∧ y ≥ 6) =⇒ I (−x , y − 1).
VC2: (I (x , y) ∧ (x + y) ≥ 0 ∧ y < 6) =⇒ I (x − 1,−y).
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Approach: Local QE Heuristics

I A program path is a sequence of assignment statements
interspersed with tests. Its behavior may have to be
approximated to generate the post condition in which both
the hypothesis and the conclusion are each conjunctions of
atomic octagonal formulas.

I A verification condition is expressed using atomic formulas
that are all octagonal constraints.∧

i ,j

(
(Octai ,j ∧ α(xi , xj))⇒ Octa′i ,j

)
,

along with additional parameter-free constraints α(xi , xj), of
the same form in which lower and upper bounds are constants.

I Analysis of a big conjunctive constraint on every possible pair
of variables can be considered individually by considering the
subformula on each distinct pair.
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the same form in which lower and upper bounds are constants.

I Analysis of a big conjunctive constraint on every possible pair
of variables can be considered individually by considering the
subformula on each distinct pair.



Geometric QE Heuristic

I Analyze how a general octagon gets transformed due to
assignments. For each assignment case, a table is built
showing the effect on the parameter values.

I Identify conditions under which the transformed octagon
includes the portion of the original octagon satisfying tests
along a program path. This is guided again locally for every
side of the octagon,

I In the case of many possibilities, the one likely to generate the
most useful invariant is identified.

I Quantifier elimination heuristics to generate constraints on
lower and upper bounds by table look ups in O(n2) steps,
where n is the number of program variables.
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Table 3: Sign of exactly one variable is changed

x := −x + A
y := y + B

∆1 = A− B, ∆2 = A + B.

l2 ≤ x + y

x + y ≤ u2

x − y ≤ a
∆2 − u2 ≤ x − y

x − y ≤ ∆2 − l2

constraint present absent
side

condition

x − y ≤ a a ≤ ∆2 − l2 u1 ≤ ∆2 − l2 –

x − y ≥ b ∆2 − u2 ≤ b ∆2 − u2 ≤ l1 –

x + y ≤ c c ≤ ∆1 − l1 u2 ≤ ∆1 − l1 –

x + y ≥ d ∆1 − u1 ≤ d ∆1 − u1 ≤ l2 –

x ≤ e e ≤ A− l3 u3 ≤ A− l3 –

x ≥ f A− u3 ≤ f A− u3 ≤ l3 –

y ≤ g u4 ≥ g + B u4 = +∞ B > 0

y ≥ h l4 ≤ h + B l4 = −∞ B < 0
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A Simple Example

Example

x := 4 ; y := 6 ;
w h i l e ( x + y >= 0) do

i f ( y >= 6) then { x := −x ; y := y − 1 }
e l s e { x := x − 1 ; y := −y }

e n d w h i l e

VC0: I (4, 6)
VC1: (I (x , y) ∧ (x + y) ≥ 0 ∧ y ≥ 6) =⇒ I (−x , y − 1).
VC2: (I (x , y) ∧ (x + y) ≥ 0 ∧ y < 6) =⇒ I (x − 1,−y).
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Generating Constraints on Parameters

I VC0:
l1 ≤ −2 ≤ u1 ∧ l2 ≤ 10 ≤ u2 ∧ l3 ≤ 4 ≤ u3 ∧ l4 ≤ 6 ≤ u4.

I VC1: x − y : −u2 − 1 ≤ l1 ∧ u1 ≤ −l2 − 1.
x + y : −u1 + 1 ≤ 0 ∧ u2 ≤ −l1 + 1.
x : l3 + u3 = 0.
y : l4 ≤ 5.

I VC2: x − y : −u2 − 1 ≤ −u1 ∧ 10 ≤ −l2 − 1.
x + y : l1 + 1 ≤ 0 ∧ u2 ≤ u1 + 1.
x : l3 ≤ −6.
y : −u4 ≤ l4 ∧ 5 ≤ −l4.

I Make li ’s as large as possible and ui ’s as small as possible:
l1 = −10, u1 = 9, l2 = −11, u2 = 10,
l3 = −6, u3 = 6, l4 = −5, u4 = 6.

I The corresponding invariant is:
−10 ≤ x − y ≤ 9 ∧ −11 ≤ x + y ≤ 10
∧ −6 ≤ x ≤ 6 ∧ −5 ≤ y ≤ 6.
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Generating Invariants using Table Look-ups

I Parameter constraints corresponding to a specific program
path are read from the corresponding entries in tables.

I Accumulate all such constraints on parameter values. They
are also octagonal.

I Every parameter value that satisfies the parameter constraints
leads to an invariant.

I Maximum values of lower bounds and minimal values of upper
bounds satisfying the parameter constraints gives the
strongest invariants. Maximum and minimum values can be
computed using Floyd-Warshall’s algorithm.
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Complexity and Parallelization

I Overall Complexity: O(k ∗ n2):

I For every pair of program variables, parametric constraint
generation is constant time: 8 constraints, so 8 entries.

I Parametric constraints are decomposed based on parameters
appearing in them: there are O(n2) such constraints on
disjoint blocks of parameters of size ≤ 4.

I Program paths can be analyzed in parallel. Parametric
constraints can be processed in parallel.
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Max Formulas

Pictorial representation of all possible cases of max(±x + l ,±y + h).
Observe that every defined region is nonconvex.

max(x − l5, y − l6) ≥ 0

(bottom left corner)

max(x − l8,−y + u8) ≥ 0

(top left corner)

max(−x + u7, y − l7) ≥ 0

(bottom right corner)

max(−x + u5,−y + u6) ≥ 0

(top right corner)



Max Formulas

A typical template: octagonal formulas and max formulas.

l1 ≤ x − y ≤ u1

l2 ≤ x + y ≤ u2

l3 ≤ x ≤ u3

l4 ≤ y ≤ u4

max( x − l5, y − l6) ≥ 0

max( x − l8,−y + u8) ≥ 0

max(−x + u7, y − l7) ≥ 0

max(−x + u5,−y + u6) ≥ 0



Max Formulas – some nonconvex regions

An octagon with two corners cut out.
A square that turns into 2 disconnected components.



Table 6: Parametric Constraints for assignments with sign
of one variable reversed

Assignments: x := −x + A, y := y + B

Bottom left and bottom right corners:
max(x − l5, y − l6) ≥ 0 and max(−x + u7, y − l7) ≥ 0

y ≥ h absent y ≥ h present

x ≥ f absent (l5 + u7 ≥ A ∧ l7 − l6 ≤ B) l7 ≤ h + B
∨ l5 + u7 ≤ A ∨ l7 − l4 ≤ B
∨ l2 − l7 + u7 ≥ A− B

x ≥ f present u7 ≥ −f + A u7 ≥ −f + A ∨ l6 ≤ h + B

The constraints for two absent tests can also be used as disjuncts in the other cases.

y ≥ h absent y ≥ h present

x ≤ e absent (l5 + u7 ≤ A ∧ l6 − l7 ≤ B) l6 ≤ h + B
∨ l5 + u3 ≤ A ∨ l6 − l4 ≤ B
∨ l5 + l6 − u1 ≥ A+ B

x ≤ e present l5 ≤ −e + A l5 ≤ −e + A ∨ l6 ≤ h + B

The constraints for two absent tests can also be used as disjuncts in the other cases.



Table 6 Contd: Parametric Constraints for assignments
with sign of one variable reversed

Assignments: x := −x + A, y := y + B

Top left and top right corners:
max(x − l8,−y + u8) ≥ 0 and max(−x + u5,−y + u6) ≥ 0

y ≤ g absent y ≤ g present

x ≥ f absent (l8 + u5 ≥ A ∧ u6 − u8 ≥ B) u6 ≥ g + B
∨ l3 + u5 ≥ A ∨ u6 − u4 ≥ B
∨ l1 + u5 + u6 ≥ A+ B

x ≥ f present u5 ≥ −f + A u5 ≤ −f + A ∨ u6 ≥ g + B

The constraints for two absent tests can also be used as disjuncts in the other cases.

y ≤ g absent y ≤ g present

x ≤ e absent (l8 + u5 ≤ A ∧ u8 − u6 ≥ B) u8 ≥ g + B
∨ l8 + u3 ≤ A ∨ u8 − u4 ≥ B
∨ l8 + u2 − u8 ≤ A− B

x ≤ e present l8 ≤ −e + A l8 ≤ −e + A ∨ u8 ≥ g + B

The constraints for two absent tests can also be used as disjuncts in the other cases.



Example: Stairs Program

x := 1 ; y := 4 ;
w h i l e ( y>1) {

i f ( x<2)
x++;

e l s e i f ( y>3)
y−−;

e l s e i f ( x<3)
x++;

e l s e i f ( y>2)
y−−;

e l s e i f ( x<4)
x++;

e l s e
y−−;

}

0 1 2 3 4 5

1

2

3

4

5



Example: Stairs Program

Parametric Constraints due to the initialization x := 1; y := 4:

l1 ≤ −3 ≤ u1 l5 ≤ 1 ∨ l6 ≤ 4

l2 ≤ 5 ≤ u2 u5 ≥ 1 ∨ u6 ≥ 4

l3 ≤ 1 ≤ u3 l7 ≤ 1 ∨ u7 ≥ 4

l4 ≤ 4 ≤ u4 l8 ≥ 1 ∨ u8 ≥ 4



Example: Stairs Program
Parametric Constraints from Table look up for

I Program paths in which x is increasing:

u1 = +∞ u5 ≥ 2

u2 = +∞ u5 ≥ 3 ∨ u6 ≥ 3

u3 ≥ 2 u5 ≥ 4 ∨ u6 ≥ 2

u3 ≥ 3

u3 ≥ 4

I Program Paths in which y is decreasing:

u1 = +∞ l5 ≥ 2 ∨ l6 ≥ 5

l2 = −∞ l5 ≥ 3 ∨ l6 ≥ 4

l4 ≤ 3 l5 ≥ 4 ∨ l6 ≥ 3

l4 ≤ 2

l4 ≤ 1



Example: Stairs Program

Putting all parametric constraints together and deriving the
strongest max invariant

(contrasted with the strongest octagonal invariant)
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w h i l e ( y>1) {
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x++;

e l s e i f ( y>3)
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e l s e i f ( x<3)
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Example: Stairs Program
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Invariants of a Program with a nested loop

x := 1 ; y := 4 ;
w h i l e ( t r u e ) {

i f ( x<2)
x++;

e l s e i f ( y>3)
y−−;

e l s e i f ( x<3)
x++;

e l s e i f ( y>2)
y−−;

e l s e i f ( x<4)
x++;

e l s e i f ( y>1)
y−−;

e l s e
w h i l e ( x>1) {

x−−; y++;
}

} 0 1 2 3 4 5

1

2

3

4

5



Invariants of a Program with a nested loop
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outer invariant



Invariants of a Program with a nested loop

x := 1 ; y := 4 ;
w h i l e ( t r u e ) {
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x++;
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e l s e i f ( y>2)
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e l s e i f ( x<4)
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e l s e
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outer invariant

inner invariant



Max Invariants vs Octagonal Invariants
I 16 instead of 8 parameters per variable pair:

l1, u1, . . . , l4, u4, l5, u5, . . . , l8, u8

I Octagon: Unique optimal values for parameters.
Max: Multiple noncomparable values for parameter tuples.

(recall the step function invariant before)

max(x − l5, y − l6) ≥ 0 max(−x + u5,−y + u6) ≥ 0

max(x − 2, y − 4) ≥ 0 max(−x + 2,−y + 3) ≥ 0

max(x − 3, y − 3) ≥ 0 max(−x + 3,−y + 2) ≥ 0

max(x − 4, y − 2) ≥ 0

I Many disjunctions in Tables.

I Experimentation and heuristics for determining possibilities in
disjunctions that are more useful.

I Sacrificing efficiency to generate stronger invariants.

I Same asymptotic complexity if a single parametric constraint
in every table entry is selected.
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Termination Analysis based on Quantifier Elimination

Ranking functions can be synthesized by hypothesizing poiynomials
in program variables and unary predicates on program variable in a
loop body.

Example

w h i l e ( n>1) {
i f n mod 2 = 0 then n := n/2

e l s e n := n+1
}

Theorem There does not exist any polynomial in n that can serve
as a ranking function.
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Termination Analysis based on Quantifier Elimination

The synthesis of a polynomial ranking function of arbitrary degree
can be hypothesized: much like verification conditions, leading to
two constraints:

1. n mod 2 = 0: easy.

2. otherwise: n′ = n + 1, so tricky.

Must use the function n mod 2. Consider n + 2(n mod 2) as a
possible ranking function (which can be generated from
An + B(n mod 2) + C ).

1. n mod 2 = 0: tricky but with the loop condition n > 1, easy.

2. otherwise: n′ = n + 1: easy.
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Interpolant Generation using Quantifier Elimination

Craig: Given α =⇒ β, an intermediate formula γ in common
symbols of α and β exists and can be constructed such that

α =⇒ γ ∧ γ =⇒ β

The existence and construction typically relies on a proof.

In Kapur et al (FSE06) we showed an obvious connection between
interpolation and quantifier elimination.
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Interpolant Generation using Quantifier Elimination

I Eliminate uncommon symbols from α: interpolant.

I Similarly for β.

I All interpolants between α and β form a lattice using
implication with the interpolant generated from α as the top
element of the lattice and the one from β being the bottom
element.

I The above assertions assume complete quantifier elimination.

I This interpolant generated from α can serve as an interpolant
all β’s whose uncommon symbols with α are precisely remain
invariant. Other properties of such interpolants can also be
established.



Interpolant Generation using Quantifier Elimination

I Eliminate uncommon symbols from α: interpolant.

I Similarly for β.

I All interpolants between α and β form a lattice using
implication with the interpolant generated from α as the top
element of the lattice and the one from β being the bottom
element.

I The above assertions assume complete quantifier elimination.

I This interpolant generated from α can serve as an interpolant
all β’s whose uncommon symbols with α are precisely remain
invariant. Other properties of such interpolants can also be
established.



Interpolant Generation using Quantifier Elimination

I Eliminate uncommon symbols from α: interpolant.

I Similarly for β.

I All interpolants between α and β form a lattice using
implication with the interpolant generated from α as the top
element of the lattice and the one from β being the bottom
element.

I The above assertions assume complete quantifier elimination.

I This interpolant generated from α can serve as an interpolant
all β’s whose uncommon symbols with α are precisely remain
invariant. Other properties of such interpolants can also be
established.



Interpolant Generation using Quantifier Elimination

I Eliminate uncommon symbols from α: interpolant.

I Similarly for β.

I All interpolants between α and β form a lattice using
implication with the interpolant generated from α as the top
element of the lattice and the one from β being the bottom
element.

I The above assertions assume complete quantifier elimination.

I This interpolant generated from α can serve as an interpolant
all β’s whose uncommon symbols with α are precisely remain
invariant. Other properties of such interpolants can also be
established.



Interpolant Generation using Quantifier Elimination

I Eliminate uncommon symbols from α: interpolant.

I Similarly for β.

I All interpolants between α and β form a lattice using
implication with the interpolant generated from α as the top
element of the lattice and the one from β being the bottom
element.

I The above assertions assume complete quantifier elimination.

I This interpolant generated from α can serve as an interpolant
all β’s whose uncommon symbols with α are precisely remain
invariant. Other properties of such interpolants can also be
established.



Interpolants over Equality with Uninterpreted Symbols
α, a finite conjunction of equality and disequalities over constants
and function symbols, with their subset UC being uncommon
symbols with β’s (UC may or may not include nonconstant
function symbols).

I Run Kapur’s congruence closure algorithm (RTA 1997) on
equations with two differences.

I Flatten terms by introducing new constant symbols. If a
nonconstant subterm being replaced by a new constant has an
outermost uncommon symbol, then the new constant is also
viewed as uncommon. Otherwise, it is viewed as a common
symbol.

I Define a total ordering in which all uncommon nonconstant
symbols are bigger than all uncommon constant symbols,
followed by all common nonconstant symbols which are made
bigger than all common constant symbols, run congruence
closure which is ground completion.

I This is in contrast to Kapur’s algorithm in which all
nonconstant symbols are bigger than constant symbols.
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Interpolants over Equality with Uninterpreted Symbols

I The result is a finite set of rewrite rules of the form
f (c , d)→ e (f , c , d are common ) =⇒ eis common
c → e; (c is common) implies (e is common)

I Horn clause introduction From

f (a, b)→ e, f (c, d)→ g ,

(a = c ∧ b = d) =⇒ e = g

where f is uncommon or least one of a, b, c , d is uncommon.

I Normalize Horn clauses Run congruence closure on the
antecedent and normalize the consequent. If a Horn clause
becomes trivially true, it is discarded. This is done every time
a new Horn clause is generated.
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Interpolants over Equality with Uninterpreted Symbols

I Conditional Rewriting The consequent of a Horn clause may
have a uncommon symbol on its left side, which may also
appear in an antecedent. That can be replaced in all such
antecedents by carrying the conditions of this antecedent,

(c1 = d1 ∧ · · · ∧ ck = dk) =⇒ c = d

(a1 = b1 ∧ · · · ∧ al = bl) =⇒ a = b

If a is some ci or di , then

(a1 = b1∧· · ·∧al = bl)∧(c1 = d1∧b = di∧· · · ck = dk) =⇒ c = d

DIsequalities do not play since at best they can do is to delete a
Horn clause or identify unsatisfiability. But if α is assumed to be
satisfiable in the input, then the result of this includes an
interpolant which is all the equations and Horn clauses which only
have common symbols.



An Example of Interpolant Generation on EUF

Mutually contradictory α = {x1 = z1, z2 = x2, z3 = f (x1), f (x2) =
z4, x3 = z5, z6 = x4, z7 = f (x3), f (x4) = z8} and

β = {z1 = z2, z5 = f (z3), f (z4) = z6, y1 = z7, z8 = y2, y1 6= y2}
Commons symbols are {f , z1, z2, z3, z4, z5, z6, z7, z8}.

Our algorithm gives:
{x1 → z1, x2 → z2, f (z1)→ z3, f (z2)→ z4, x3 → z5, x4 →
z6, f (z5)→ z7, f (z6)→ z8}.
The interpolant Iα:
{f (z1) = z3, f (z2) = z4, f (z5) = z7, f (z6) = z8}. No need to
generate any Horn clauses.

The interpolant reported by McMillan’s algorithm is:
(z1 = z2 ∧ (z3 = z4 =⇒ z5 = z6)) =⇒ (z3 = z4 ∧ z7 = z8)

Tinelli et al’s algorithm, it is:
(z1 = z2 =⇒ z3 = z4) ∧ (z5 = z6 =⇒ z7 = z8).
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Interpolant Generation over Octagonal formulas

Let α to be a conjunction of ±xi ≤ ci and ±xi ± xj ≤ ci ,j , where xi
and xj are distinct.

1. For each uncommon symbol xi in α, consider two octagon
formulas in which the sign of xi is positive in one and negative
in the other.
xi is eliminated by adding the two formulas. This must be
done for every pair of such formulas.

2. In case a formula of the form 2xj ≤ a or −2xJ ≤ a, it is
normalized in the case octagonal formulas are over the
integers.

3. If some uncommon symbol only appears positively or
negatively, all octagonal formulas containing it can be
eliminated as they do not occur in the interpolant.

The result of all uncommon symbols is an interpolant generated
from α. This is illustrated below.
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Griggio’s example of Octagonal Formulas

Mutually contradictory
α = {x1− x2 ≥ −4, − x2− x3 ≥ 5, x2 + x6 ≥ 4, x2 + x5 ≥ −3},
β = { −x1 + x3 ≥ −2, − x4 − x6 ≥ 0, − x5 + x4 ≥ 0}
Uncommon symbols: {x2}.

1. Eliminate x2:
{−x3 + x5 ≥ 2, x1 + x6 ≥ 0, x1 + x5 ≥ −7, − x3 + x6 ≥ 9}.

2. No literal from α is included.

3. Interpolant:
Iα = {−x3 + x5 ≥ 2, x1 + x6 ≥ 0, x1 + x5 ≥ −7,−x3 + x6 ≥ 9}.

Griggio’s algorithm gives the conditional interpolant
(−x6 − x5 ≥ 0) =⇒ (x1 − x + 3 ≥ 3)
The strongest interpolant is an octagonal formula and is
generated by our algorithm.
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Saturation based Invariant Strengthening and Abductor
Generation

I Given a formula claimed to be an invariant I (or a post
condition a la IC3)

I attempt to prove it inductive incrementally for every path:
(I ∧ cond) =⇒ I ′.

I lucky and success: great.
I unsuccessful: attempt to strengthen I using ψ such that

(I ∧ cond ∧ ψ) =⇒ (I ′ ∧ ψ′)

I Repeat this process until a counter-example is found or
success.

I How to obtain ψ?

I Approximate ψ to be (I ∧ cond ∧ ψ) =⇒ I ′

I ψ is an abductor for (I ∧ cond , I ′).
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Generation

Example

var x , y , z : integer end var
x := 0, y := 0, z := 9;
while x ≤ N do
x := x + 1; y := y + 1; z := z + x − y ;
end while

Goal: z ≤ 0 is a loop invariant.

z ≤ 0 6=⇒ z + x − y ≤ 0.
(z ≤ 0 ∧ z + x − y ≤ 0) 6=⇒ (z + x − y ≤ 0 ∧ z + 2x − 2y ≤ 0).
Strengthen it to z ≤ 0 ∧ x − y ≤ 0
Quantifier elimination comes to the rescue
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Salient Points

I Quantifier-elimination is ubiquitous.

I Since general (complete) QE methods are very expensive and
their outputs are hard to decipher, it is better to consider
special cases, sacrificing completeness as well as generality.

I There is a real trade-off between resources/efficiency and
precision/incompleteness.

I Let us call a spade a spade.
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Challenges

I Can we develop specialized quantifier elimination
algorithms/heuristics for various fragments of real and
complex arithmetic?

I Outputs generated by them need not be complete but must
be useful for SMT solvers and theorem provers/verification
systems.

I How can propositional reasoning, first-order and equational
reasoning, redundancy checks, and preprocessing be exploited
in general quantifier elimination methods to make them more
effective?

I Can we have better, effective interfaces between a computer
algebra system and a theorem prover?

I Can certificates be generated for outputs computed by a
symbolic computation algorithm so that a theorem
prover/SMT solver can trust it?
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Parametric Gröbner Computations in Quantifier
Elimination over the reals

I Gröbner basis computations are being widely used in many
application domains, especially for equational solving

I Given the success of Gröbner basis computations for handling
many problems in algebraic geometry, polynomial equation
solving and program analysis, as well our good experience in
computing comprehensive Gröbner systems, we are encouraged
to build a practical incomplete heuristic for the theory of real
closed field:

1. draw upon extensive experience from SAT/SMT solvers,
first-order reasoning to handle “nonalgebraic” reasoning.

2. use sum of squares heuristics (using completing square
strategy): Σk

u=1p
2
u = 0 =⇒ pi = 0.

3. perhaps positive NullstellensatzNullstellensatzNullstellensatz
(some aspects)

4. semi-definite Programming
5. a small step: interpolant generation for concave quadratic

polynomial inequalities (over EUF).
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I Given the success of Gröbner basis computations for handling
many problems in algebraic geometry, polynomial equation
solving and program analysis, as well our good experience in
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I Given the success of Gröbner basis computations for handling
many problems in algebraic geometry, polynomial equation
solving and program analysis, as well our good experience in
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