On Conversions from CNF to ANF

Jan Horáček Martin Kreuzer

Faculty of Informatics and Mathematics University of Passau, Germany

Jan.Horacek@uni-passau.de Martin.Kreuzer@uni-passau.de

Background

ANF is "XOR of ANDs"

- indeterminates x_1, \ldots, x_n
- $\mathbb{B}_n = \mathbb{F}_2[x_1, \dots, x_n]/F$, $F = \langle x_1^2 + x_1, \dots, x_n^2 + x_n \rangle$
- squarefree support

Set of $\mathbb{F}_2\text{-rational zeros}$

•
$$S = \{f_1, \dots, f_s\} \subseteq \mathbb{B}_n$$

• $\mathcal{Z}(S) = \{a \in \mathbb{F}_2^n \mid f(a) = 0 \text{ for all } f \in S\}$

Algebraic solvers

- the Bool. Gröbner Basis Alg.
- the Bool. Border Basis Alg.
- the XL/XSL, ElimLin, ...

CNF is "AND of ORs"

• logical variables
$$X_1, \ldots, X_n$$

• $C = \{ \{L_{1,1}, \ldots, L_{1,n_1} \}, \ldots, \{L_{k,1}, \ldots, L_{k,n_k} \} \}$
corresponds to
 $\phi = (L_{1,1} \lor \cdots \lor L_{1,n_1}) \land \ldots, \land (L_{k,1} \lor \cdots \lor L_{k,n_k})$

Set of satisfying assignments

• True
$$\equiv 1$$
 and False $\equiv 0$
• SAT(C) = $\{a \in \{0,1\}^n \mid C(a) \text{ evaluates to } 1\}$

SAT solvers

- DPLL
- CDCL, ...

Representations

Algebraic/logical representation

Let $S \subseteq \mathbb{B}_n$ be a set of Boolean polynomials and C a set of clauses in the logical variables X_1, \ldots, X_n . We say that C is a **logical representation** of S resp. S is an **algebraic representation** of C if and only if $SAT(C) = \mathcal{Z}(S)$.

Standard CNF to ANF conversion

```
Algorithm 1 (Standard CNF to ANF Conversion)
Input: A set of clauses C in logical variables X_1, \ldots, X_n.
Output: A set S \subseteq \mathbb{B}_n such that S is an algebraic representation of C.
 1 S := \emptyset
 2: foreach c in C do
 3 \cdot f \cdot = 1
      foreach L in c do
 Δ٠
 5
         if L = X_i is positive then
            f := f \cdot (x_i + 1)
 6:
         else if L = \bar{X}_i is negative then
 7.
           f := f \cdot (x_i)
 8.
         end if
 9:
      end foreach
10.
      S := S \cup \{f\}
11:
12 end foreach
13: return S
```

Standard CNF to ANF conversion

Example	
$ \begin{array}{c} \{X_1, X_2\} \\ \{\bar{X}_1, X_2, X_3\} \\ \{X_4, X_5\} \\ \{X_1, \bar{X}_2, X_3\} \\ \{\bar{X}_1, \bar{X}_2, \bar{X}_3\} \end{array} $	$ \begin{array}{l} \rightarrow x_{1}x_{2} + x_{1} + x_{2} + 1 \\ \rightarrow x_{1}x_{2}x_{3} + x_{1}x_{2} + x_{1}x_{3} + x_{1} \\ \rightarrow x_{4}x_{5} + x_{4} + x_{5} + 1 \\ \rightarrow x_{1}x_{2}x_{3} + x_{1}x_{2} + x_{2}x_{3} + x_{1} \\ \rightarrow x_{1}x_{2}x_{3} \end{array} $
$\{X_4, \bar{X}_5\}$	$\rightarrow x_4 x_5 + x_5$

Too many polynomials of high degree!

Building *m*-Blocks

Definition

- (a) The set of variables X_i such that X_i or \bar{X}_i is contained in one of the clauses of C is denoted by var(C) and is called the **set of variables** of C.
- (b) We say c ∈ C has positive (resp. negative) sign if the number of negative literals is an even (resp. odd) number.
- (c) We define the **length of a clause** $c \in C$ as the cardinality #c.

(d) Let $c, c' \in C$. A number $m \ge 1$ such that $\#(\operatorname{var}(c) \cap \operatorname{var}(c')) \ge m$ is called an **overlapping number** of c and c'.

Building *m*-Blocks

Algorithm 2 (Building *m*-Blocks)

Input: A set of clauses *C*, an overlapping number $m \in \mathbb{N}$.

Output: A set of subsets \mathcal{B} of C and a subset T of C such that for $B \in \mathcal{B}$ with $\#B \ge 2$ and for every $b \in B$, there exists an element $b' \in B \setminus \{b\}$ with the property that m is an overlapping number for b and b', and such that $(\bigcup_{B \in \mathcal{B}} B) \cup T = C$ and every clause in T contains less than m literals.

1: foreach c in C do 2: $B_c := \{c' \in C \mid \#(\operatorname{var}(c) \cap \operatorname{var}(c')) \ge m\}$ 3: end foreach 4: $\mathcal{B}' := \{B_c \mid c \in C, B_c \neq \emptyset\}$ 5: Let \mathcal{B} be the set of maximal elements of \mathcal{B}' w.r.t. inclusion. 6: $T := C \setminus \bigcup_{c \in C} B_c$

7: return (\mathcal{B}, T)

Building *m*-Blocks

Example: m = 2 $\begin{cases} X_1, X_2 \\ \{\bar{X}_1, X_2, X_3 \} \\ \{X_4, X_5 \} \\ \{X_1, \bar{X}_2, X_3 \} \\ \{\bar{X}_1, \bar{X}_2, \bar{X}_3 \} \\ \{\bar{X}_1, \bar{X}_2, \bar{X}_3 \} \\ \{X_4, \bar{X}_5 \} \end{cases} \rightarrow \begin{bmatrix} \{X_1, X_2 \} \\ \{\bar{X}_1, X_2, X_3 \} \\ \{\bar{X}_1, \bar{X}_2, \bar{X}_3 \} \\ \{\bar{X}_1, \bar{X}_2, \bar{X}_3 \} \end{bmatrix}, \begin{bmatrix} \{X_4, X_5 \} \\ \{X_4, \bar{X}_5 \} \end{bmatrix}$

Proposition

The output of Algorithm 2 is uniquely determined.

Blockwise CNF to ANF Conversion

Algorithm 3 (Blockwise CNF to ANF Conversion) *Input:* A set of clauses *C* in logical variables X_1, \ldots, X_n , a degree compatible term ordering σ , and an overlapping number $m \in \mathbb{N}$. *Output:* A set $S_{\sigma,m} \subseteq \mathbb{B}_n$ such that $S_{\sigma,m}$ is an algebraic representation of *C*.

Requires: Algorithm 1 and 2, a reduced Boolean Gröbner basis algorithm.

- 1: $S' := \emptyset$
- 2: Using Algorithm2(C, m), compute a pair (\mathcal{B}, T) .
- 3: $\mathcal{B} := \mathcal{B} \cup \bigcup_{t \in T} \{t\}$
- 4: foreach B in \mathcal{B} do
- 5: Q := Algorithm1(B)
- Let G be the reduced Boolean σ-Gröbner basis of the ideal (Q), i.e., the reduced Boolean Gröbner basis with respect to the term ordering σ.
- 7: $S' := S' \cup G$
- 8: end foreach
- 9: Let $S_{\sigma,m}$ be an LT_{σ} -interreduced \mathbb{F}_2 -basis of $\langle S' \rangle_{\mathbb{F}_2}$ such that its coefficient matrix w.r.t. σ is in reduced row echelon form.
- 10: return $S_{\sigma,m}$

Blockwise CNF to ANF Conversion

Example: m = 2, $\sigma = degrevlex$

$$\begin{cases} X_1, X_2 \} & \to x_1 x_2 + x_1 + x_2 + 1 \\ \{ \bar{X}_1, X_2, X_3 \} & \to x_1 x_2 x_3 + x_1 x_2 + x_1 x_3 + x_1 \\ \{ X_1, \bar{X}_2, X_3 \} & \to x_1 x_2 x_3 + x_1 x_2 + x_2 x_3 + x_1 \\ \{ \bar{X}_1, \bar{X}_2, \bar{X}_3 \} & \to x_1 x_2 x_3 \end{cases} \rightarrow x_1 x_2 x_3$$

$$\begin{array}{l} \{X_4, X_5\} & \to x_4 x_5 + x_4 + x_5 + 1 \\ \{X_4, \bar{X}_5\} & \to x_4 x_5 + x_5 \end{array} \right] \to x_4 + 1$$

Proposition

The output of Algorithm 3 is an algebraic representation of C and is uniquely determined by σ and m.

Conversion to linear polynomials

Definition

A set of clauses B, all of which have the same length ℓ , which consists of all possible clauses with either only positive or only negative sign is called a **complete signed set** of clauses.

Example

Let
$$B = \{\{\bar{X}_1, X_2, X_3\}, \{X_1, \bar{X}_2, X_3\}, \{X_1, X_2, \bar{X}_3\}\{\bar{X}_1, \bar{X}_2, \bar{X}_3\}\}$$

B is logical representation of $x_1 + x_2 + x_3$.

Remark

A complete signed set of clauses B of length ℓ consists of $2^{\ell-1}$ clauses. The set B is a logical representation of a linear polynomial.

Conversion to Linear Polynomials

Proposition

Let ϕ, ψ be propositional logic formulas. Then we have $\phi \equiv (\phi \lor \psi) \land (\phi \lor \bar{\psi})$.

Example

Let $B = \{\{X_1, X_2\}, \{\bar{X}_1, X_2, X_3\}, \{X_1, \bar{X}_2, X_3\}, \{\bar{X}_1, \bar{X}_2, \bar{X}_3\}\}$. The first clause in B is equivalent to the two clauses $\{X_1, X_2, X_3\}, \{X_1, X_2, \bar{X}_3\}$. In view of this, we have covered all four possible combinations for negative signed clauses of length 3. Indeed, Algorithm 3 converts B into $x_1 + x_2 + x_3$ and $x_2x_3 + x_2 + x_3 + 1$.

Notes

- Algorithm 3 produces at least the same number of linear polynomials as the brute-force extending of the input clauses.
- Algorithm 3 performs block-wise simple logic reasoning (DPLL rules).
- Conversion back and forth may solve the system.

Experiments

Instance	CNF		Algorithm 1			Algorithm 3		
	#vars	#clauses	#lin	$\overset{\circ}{\#}quad$	#high	#lin	$\overset{\circ}{\#}quad$	#high
AES-10-1-2-4	1081	3361	1	1792	1568	337	2194	0
AES-10-1-4-4	1862	5824	1	2986	2837	604	3692	0
AES-10-2-2-4	2441	7841	1	3584	4256	947	4407	0
AES-10-2-4-4	4289	13904	1	5986	7917	1785	7353	0
AES-10-4-1-4	3149	10065	1	4800	5264	1149	5915	0
AES-2-1-2-4	237	701	1	360	340	70	453	0
AES-2-1-4-4	412	1218	1	598	619	132	746	0
AES-2-2-2-4	526	1615	1	716	898	201	882	0
AES-2-2-4-4	935	2883	1	1196	1686	375	1491	0
AES-2-4-1-4	669	2065	1	960	1104	241	1191	0
AES-2-4-2-4	1157	3652	1	1434	2217	501	1778	0
AES-2-4-4-4	2077	6596	1	2394	4201	957	2978	0
fact-12601-18701	745	3853	2	616	3235	291	1365	2
fact-151-283	271	1333	2	250	1081	115	471	2
fact-1777-491	403	2029	2	354	1673	166	713	2
fact-2393-3371	466	2380	2	400	1978	181	855	2
fact-373-929	328	1640	2	294	1344	131	593	2
fact-583909-600203	1280	6784	2	1010	5772	471	2428	2
fact-59-1009	328	1640	2	294	1344	149	544	2
fact-59441-62201	826	4312	2	676	3634	318	1527	2
fact-81551-100057	947	4945	2	770	4173	359	1767	2
fact-9601-10067	638	3296	2	532	2762	243	1188	2

Table: Number of converted polynomials by degree.

On Conversions from CNF to ANF

Thank you!