

Comparing Different Projection Operators in the Cylindrical Algebraic Decomposition for SMT Solving

Tarik Viehmann, **Gereon Kremer**, Erika Ábrahám SC² Workshop July 29th

Preliminaries

2 CAD

Experiments

Projections SMT solving Incompleteness of McCallum / Brown Effects of squarefree basis

Nonlinear arithmetic QF_NRA

Definition (Nonlinear arithmetic)

Boolean combinations of polynomial constraints over reals

Nonlinear arithmetic QF_NRA

Definition (Nonlinear arithmetic)

Boolean combinations of polynomial constraints over reals

Example

$$\exists x, y. \qquad x^2 + y^2 - 4 \le 0 \land (x^2 - y + 0.5 < 0 \lor x^2 + 5 \cdot y + 5 < 0)$$

SMT Solving

RNTHAACHEN UNIVERSITY

Cylindrical Algebraic Decomposition

 $\exists x, y. \qquad x^2 + y^2 - 4 \le 0 \land (x^2 - y + 0.5 < 0 \lor x^2 + 5 \cdot y + 5 < 0)$

RNTHAACHEN UNIVERSITY

$$\exists x, y. \qquad x^2 + y^2 - 4 \le 0 \land (x^2 - y + 0.5 < 0 \lor x^2 + 5 \cdot y + 5 < 0)$$

- Where are solutions?
- \rightarrow Sign-invariant regions

RNTHAACHEN UNIVERSITY

$$\exists x, y. \qquad x^2 + y^2 - 4 \le 0 \land (x^2 - y + 0.5 < 0 \lor x^2 + 5 \cdot y + 5 < 0)$$

- Where are solutions?
- \rightarrow Sign-invariant regions

$$\exists x, y. \qquad x^2 + y^2 - 4 \le 0 \land (x^2 - y + 0.5 < 0 \lor x^2 + 5 \cdot y + 5 < 0)$$

- Where are solutions?
- \rightarrow Sign-invariant regions
 - What would a human do?

RWTHAACHEN UNIVERSITY

$$\exists x, y. \qquad x^2 + y^2 - 4 \le 0 \land (x^2 - y + 0.5 < 0 \lor x^2 + 5 \cdot y + 5 < 0)$$

- Where are solutions?
- \rightarrow Sign-invariant regions
 - What would a human do?

RNTHAACHEN UNIVERSITY

$$\exists x, y. \qquad x^2 + y^2 - 4 \le 0 \land (x^2 - y + 0.5 < 0 \lor x^2 + 5 \cdot y + 5 < 0)$$

- Where are solutions?
- \rightarrow Sign-invariant regions
 - What would a human do?

$$\exists x, y. \qquad x^2 + y^2 - 4 \le 0 \land (x^2 - y + 0.5 < 0 \lor x^2 + 5 \cdot y + 5 < 0)$$

- Where are solutions?
- \rightarrow Sign-invariant regions
 - What would a human do?
 - What would CAD do?

$$\exists x, y. \qquad x^2 + y^2 - 4 \le 0 \land (x^2 - y + 0.5 < 0 \lor x^2 + 5 \cdot y + 5 < 0)$$

- Where are solutions?
- \rightarrow Sign-invariant regions
 - What would a human do?
- What would CAD do?
 - First dimension x

$$\exists x, y. \qquad x^2 + y^2 - 4 \le 0 \land (x^2 - y + 0.5 < 0 \lor x^2 + 5 \cdot y + 5 < 0)$$

- Where are solutions?
- \rightarrow Sign-invariant regions
 - What would a human do?
- What would CAD do?
 - First dimension x

$$\exists x, y. \qquad x^2 + y^2 - 4 \le 0 \land (x^2 - y + 0.5 < 0 \lor x^2 + 5 \cdot y + 5 < 0)$$

- Where are solutions?
- \rightarrow Sign-invariant regions
 - What would a human do?
- What would CAD do?
 - ► First dimension *x*

$$\exists x, y. \qquad x^2 + y^2 - 4 \le 0 \land (x^2 - y + 0.5 < 0 \lor x^2 + 5 \cdot y + 5 < 0)$$

- Where are solutions?
- \rightarrow Sign-invariant regions
 - What would a human do?
- What would CAD do?
 - ► First dimension *x*

$$\exists x, y. \qquad x^2 + y^2 - 4 \le 0 \land (x^2 - y + 0.5 < 0 \lor x^2 + 5 \cdot y + 5 < 0)$$

- Where are solutions?
- \rightarrow Sign-invariant regions
 - What would a human do?
- What would CAD do?
 - First dimension x
 - Second dimension y

$$\exists x, y. \qquad x^2 + y^2 - 4 \le 0 \land (x^2 - y + 0.5 < 0 \lor x^2 + 5 \cdot y + 5 < 0)$$

- Where are solutions?
- \rightarrow Sign-invariant regions
 - What would a human do?
- What would CAD do?
 - First dimension x
 - Second dimension y

Cylindrical Algebraic Decomposition

 $\exists x, y. \qquad x^2 + y^2 - 4 \le 0 \land (x^2 - y + 0.5 < 0 \lor x^2 + 5 \cdot y + 5 < 0)$

- Where are solutions?
- \rightarrow Sign-invariant regions
 - What would a human do?
- What would CAD do?
 - ► First dimension x
 - ► Second dimension *y*
 - Test sample points

$$\exists x, y. \qquad x^2 + y^2 - 4 \le 0 \land (x^2 - y + 0.5 < 0 \lor x^2 + 5 \cdot y + 5 < 0)$$

- Where are solutions?
- \rightarrow Sign-invariant regions
 - What would a human do?
- What would CAD do?
 - ► First dimension x
 - Second dimension y
 - Test sample points

$$\exists x, y. \qquad x^2 + y^2 - 4 \le 0 \land (x^2 - y + 0.5 < 0 \lor x^2 + 5 \cdot y + 5 < 0)$$

- Where are solutions?
- \rightarrow Sign-invariant regions
 - What would a human do?
- What would CAD do?
 - ► First dimension x
 - Second dimension y
 - Test sample points

$$\exists x, y. \qquad x^2 + y^2 - 4 \le 0 \land (x^2 - y + 0.5 < 0 \lor x^2 + 5 \cdot y + 5 < 0)$$

- Where are solutions?
- \rightarrow Sign-invariant regions
 - What would a human do?
- What would CAD do?
 - ► First dimension x
 - Second dimension y
 - Test sample points

$$\exists x, y. \qquad x^2 + y^2 - 4 \le 0 \land (x^2 - y + 0.5 < 0 \lor x^2 + 5 \cdot y + 5 < 0)$$

- Where are solutions?
- \rightarrow Sign-invariant regions
 - What would a human do?
- What would CAD do?
 - ► First dimension x
 - Second dimension y
 - Test sample points

RNTHAACHEN UNIVERSITY

$$P_n \subseteq \mathbb{Z}[x_1, \dots, x_n]$$
project
$$P_{n-1} \subseteq \mathbb{Z}[x_1, \dots, x_{n-1}]$$
project
$$\vdots$$
project
$$P_1 \subseteq \mathbb{Z}[x_1]$$

$$\begin{array}{c|c} P_n \subseteq \mathbb{Z}[x_1, \dots, x_n] \\ \texttt{project} \\ P_{n-1} \subseteq \mathbb{Z}[x_1, \dots, x_{n-1}] \\ \texttt{project} \\ \vdots \\ P_1 \subseteq \mathbb{Z}[x_1] \\ P_1 \subseteq \mathbb{Z}[x_1] \\ \texttt{Projection} \end{array} \qquad \begin{array}{c} Z_n \subseteq Z_{n-1} \times \mathbb{R} \\ \texttt{froots}(P_n \text{ at } Z_{n-1}) \\ \texttt{froots}(P_n \text{$$

Projection Operators

We consider:

- Collins
- Hong
- McCallum
- Brown

Projection Operators

We consider:

- Collins
- Hong
- McCallum
- Brown

Not considered:

- Lazard
- Seidl & Sturm
- Strzeboński
- Brown & Košta
- **۱**...

Collins & Hong

Definition (Collins' operator [Collins75])

$$proj_{C}^{1} := \bigcup_{p \in P} \left(coeffs(p) \cup \bigcup_{\substack{r \in RED(p) \\ r \in RED(q)}} PSC(r, r') \right)$$
$$proj_{C}^{2} := \bigcup_{\substack{p,q \in P}} \bigcup_{\substack{r_{p} \in RED(p) \\ r_{q} \in RED(q)}} PSC(r_{p}, r_{q})$$
$$proj_{C} := proj_{C}^{1} \cup proj_{C}^{2}$$

Collins & Hong

Definition (Hong's operator [Hong90])

$$proj_{C}^{1} := \bigcup_{p \in P} \left(coeffs(p) \cup \bigcup_{r \in RED(p)} PSC(r, r') \right)$$
$$proj_{H}^{2} := \bigcup_{p,q \in P} \bigcup_{r_{p} \in RED(p)} PSC(r_{p}, q)$$

 $proj_H := proj_C^1 \cup proj_H^2$

McCallum & Brown

Definition (McCallum's operator [McCallum84])

Let P be a squarefree basis.

$$proj_{M}^{1} := \bigcup_{p \in P} \{disc(p)\} \cup coeffs(p)$$
$$proj_{M}^{2} := \bigcup_{p,q \in P} \{res(p,q)\}$$
$$proj_{M} := proj_{M}^{1} \cup proj_{M}^{2}$$

Incomplete!

RNTHAACHEN UNIVERSITY

McCallum & Brown

Definition (Brown's operator [Brown01])

Let P be a squarefree basis.

$$proj_B^1 := \bigcup_{p \in P} \{disc(p)\} \cup \{lcf(p)\}$$
$$proj_M^2 := \bigcup_{p,q \in P} \{res(p,q)\}$$
$$proj_B := proj_B^1 \cup proj_M^2$$

Incomplete!

Experiments

- Projections: CAD only
- SMT solving: SAT + VS + CAD

Experiments

- Projections: CAD only
- SMT solving: SAT + VS + CAD
- No squarefree basis, no delineating polynomials (McCallum), no additional points (Brown)
- But: fully incremental, early abort

Experiments

- Projections: CAD only
- SMT solving: SAT + VS + CAD
- No squarefree basis, no delineating polynomials (McCallum), no additional points (Brown)
- But: fully incremental, early abort
- QF_NRA from SMT-COMP 2014
- Timeout 60s

Experiments

- Projections: CAD only
- SMT solving: SAT + VS + CAD
- No squarefree basis, no delineating polynomials (McCallum), no additional points (Brown)
- But: fully incremental, early abort
- QF_NRA from SMT-COMP 2014
- Timeout 60s
- Analyzed:
 - Different projection operators
 - Different projection orders

Experiments

- Projections: CAD only
- SMT solving: SAT + VS + CAD
- No squarefree basis, no delineating polynomials (McCallum), no additional points (Brown)
- But: fully incremental, early abort
- QF_NRA from SMT-COMP 2014
- Timeout 60s
- Analyzed:
 - Different projection operators
 - Different projection orders
- Not analyzed yet:
 - Different variable orderings
 - Different lifting orders

- Project all polynomials, ignore boolean structure
- ► 5698 benchmarks such that all projections terminated

- Project all polynomials, ignore boolean structure
- ► 5698 benchmarks such that all projections terminated
- ► On average 6.4 polynomials of degree 5.2 (total degree 6.1)
- Rarely more than 5 variables

- Project all polynomials, ignore boolean structure
- ► 5698 benchmarks such that all projections terminated
- ► On average 6.4 polynomials of degree 5.2 (total degree 6.1)
- Rarely more than 5 variables

	Level 1	Level 2	Level 3	Level 4
Collins	10.9 / 7.8			
Hong	8.6 / 7.8			
McCallum	6.1 / 6.7			
Brown	5.3 / 6.7			

- Project all polynomials, ignore boolean structure
- ► 5698 benchmarks such that all projections terminated
- ► On average 6.4 polynomials of degree 5.2 (total degree 6.1)
- Rarely more than 5 variables

	Level 1	Level 2	Level 3	Level 4
Collins	10.9 / 7.8	783.1 / 26.4		
Hong	8.6 / 7.8	158.8 / 26.2		
McCallum	6.1 / 6.7	16.7 / 13.3		
Brown	5.3 / 6.7	11.6 / 13.5		

Projection sizes

- Project all polynomials, ignore boolean structure
- ► 5698 benchmarks such that all projections terminated
- ► On average 6.4 polynomials of degree 5.2 (total degree 6.1)
- Rarely more than 5 variables

RINTHAACHEN UNIVERSITY

	Level 1	Level 2	Level 3	Level 4
Collins	10.9 / 7.8	783.1 / 26.4	117.0 / 11.9	
Hong	8.6 / 7.8	158.8 / 26.2	20.2 / 11.7	
McCallum	6.1 / 6.7	16.7 / 13.3	5.1/5.3	
Brown	5.3 / 6.7	11.6 / 13.5	4.7 / 5.1	

- Project all polynomials, ignore boolean structure
- ► 5698 benchmarks such that all projections terminated
- ► On average 6.4 polynomials of degree 5.2 (total degree 6.1)
- Rarely more than 5 variables

	Level 1	Level 2	Level 3	Level 4
Collins	10.9 / 7.8	783.1 / 26.4	117.0 / 11.9	15.6 / 5.3
Hong	8.6 / 7.8	158.8 / 26.2	20.2 / 11.7	10.3 / 5.1
McCallum	6.1 / 6.7	16.7 / 13.3	5.1/5.3	7.9/3.8
Brown	5.3 / 6.7	11.6 / 13.5	4.7 / 5.1	5.5 / 3.5

Projection sizes

- Project all polynomials, ignore boolean structure
- ► 5698 benchmarks such that all projections terminated
- ► On average 6.4 polynomials of degree 5.2 (total degree 6.1)
- Rarely more than 5 variables

RWITHAACHEN UNIVERSITY

Ξ

	Level 1	Level 2	Level 3	Level 4
Collins	10.9 / 7.8	783.1 / 26.4	117.0 / 11.9	15.6 / 5.3
Hong	8.6 / 7.8	158.8 / 26.2	$20.2 \ / \ 11.7$	10.3 / 5.1
McCallum	6.1 / 6.7	16.7 / 13.3	5.1 / 5.3	7.9 / 3.8
Brown	5.3 / 6.7	11.6 / 13.5	4.7 / 5.1	5.5 / 3.5

• Theory: $proj_B \subseteq proj_M \subseteq proj_H \subseteq proj_C$

Projection sizes

- Project all polynomials, ignore boolean structure
- ► 5698 benchmarks such that all projections terminated
- ► On average 6.4 polynomials of degree 5.2 (total degree 6.1)
- Rarely more than 5 variables

RINTHAACHEN UNIVERSITY

	Level 1	Level 2	Level 3	Level 4
Collins	10.9 / 7.8	783.1 / 26.4	117.0 / 11.9	15.6 / 5.3
Hong	8.6 / 7.8	158.8 / 26.2	20.2 / 11.7	10.3 / 5.1
McCallum	6.1 / 6.7	16.7 / 13.3	5.1/5.3	7.9 / 3.8
Brown	5.3 / 6.7	11.6 / 13.5	4.7 / 5.1	5.5 / 3.5

- Theory: $proj_B \subseteq proj_M \subseteq proj_H \subseteq proj_C$
- Hong may be viable if incompleteness of McCallum is an issue

SMT solving performance

▶ 5698 benchmarks from before

RWITHAACHEN UNIVERSITY

- Incremental calls from SAT module
- Incremental projection, early abort if satisfying solution is found

SMT solving performance

► 5698 benchmarks from before

RWITHAACHEN UNIVERSITY

- Incremental calls from SAT module
- Incremental projection, early abort if satisfying solution is found
- $\blacktriangleright \Rightarrow$ Size of projection may not be that crucial

SMT solving performance

► 5698 benchmarks from before

RWITHAACHEN UNIVERSITY

- Incremental calls from SAT module
- Incremental projection, early abort if satisfying solution is found
- \Rightarrow Size of projection may not be that crucial

Operator	Solved	Timeout
Collins	5041	657
Hong	5125	573
McCallum	5284	414
Brown	5299	399

McCallum vs. Brown

Similar behaviour, but some outliers in both directions

McCallum vs. Brown

- Similar behaviour, but some outliers in both directions
- Make behaviour different

McCallum vs. Brown

- Similar behaviour, but some outliers in both directions
- Make behaviour different
- Modify Brown: Consider resultants last for projection

McCallum vs. Brown

- Similar behaviour, but some outliers in both directions
- Make behaviour different

RWITHAACHEN UNIVERSITY

Modify Brown: Consider resultants last for projection

Incompleteness of McCallum / Brown

- McCallum and Brown are incomplete
- Is this a problem in practice?

Incompleteness of McCallum / Brown

- McCallum and Brown are incomplete
- Is this a problem in practice?
- ► 510 out of 5889 benchmarks

(may be fixed by delineating polynomials or additional points)

Incompleteness of McCallum / Brown

- McCallum and Brown are incomplete
- Is this a problem in practice?
- ► 510 out of 5889 benchmarks

(may be fixed by delineating polynomials or additional points)

- 353 were found to be satisfiable
- 157 were found to be unsatisfiable

Incompleteness of McCallum / Brown

- McCallum and Brown are incomplete
- Is this a problem in practice?
- 510 out of 5889 benchmarks (may be fixed by delineating polynomials or additional points)
- 353 were found to be satisfiable
- 157 were found to be unsatisfiable
- All are correct!

Incompleteness of McCallum / Brown

- McCallum and Brown are incomplete
- Is this a problem in practice?
- 510 out of 5889 benchmarks (may be fixed by delineating polynomials or additional points)
- 353 were found to be satisfiable
- 157 were found to be unsatisfiable
- All are correct!
- ► ⇒ not a pressing issue on our SMT benchmarks

- McCallum / Brown require P_k to be a squarefree basis
- Difficult to compute ignored until now

- McCallum / Brown require P_k to be a squarefree basis
- Difficult to compute ignored until now
- Using CoCoALib

- McCallum / Brown require P_k to be a squarefree basis
- Difficult to compute ignored until now
- Using CoCoALib
- Overall solving is about 10% slower
- ▶ But less timeouts! McCallum: $889 \rightarrow 739$, Brown: $842 \rightarrow 739$
- McCallum closes in on Brown!

- McCallum / Brown require P_k to be a squarefree basis
- Difficult to compute ignored until now
- Using CoCoALib
- Overall solving is about 10% slower
- ▶ But less timeouts! McCallum: $889 \rightarrow 739$, Brown: $842 \rightarrow 739$
- McCallum closes in on Brown!
- ➤ ⇒ usually detrimental, sometimes essential required for correctness!

Conclusion

- Overall trend matches theoretical expectation
- Individual examples may vary wildly
- $\blacktriangleright \Rightarrow \mathsf{Portfolio?}$

Conclusion

- Overall trend matches theoretical expectation
- Individual examples may vary wildly
- $\blacktriangleright \Rightarrow \mathsf{Portfolio?}$
- Incompleteness is not a pressing issue (for us)
- Computing squarefree basis is rather expensive

Conclusion

- Overall trend matches theoretical expectation
- Individual examples may vary wildly
- $\blacktriangleright \Rightarrow \mathsf{Portfolio?}$
- Incompleteness is not a pressing issue (for us)
- Computing squarefree basis is rather expensive
- Adapt variable ordering?
- Effects of delineating polynomials and additional points?

References

- Chistopher W. Brown, **Improved projection for cylindrical** algebraic decomposition, JSC **32** (2001).
- George E. Collins, **Quantifier elimination for real closed fields by** cylindrical algebraic decomposition, ATFL'75.
- Hoon Hong, **An improvement of the projection operator in cylindrical algebraic decomposition**, ISSAC '90.
- Scott McCallum, **An improved projection operation for cylindrical algebraic decomposition**, Ph.D. thesis, 1984.

Notation

Definition (Polynomials)

 $p = \sum_{i=0}^{m} a_i \cdot x_n^i$ in main variable x_n and $a_i \in \mathbb{R}[x_1, ..., x_{n-1}]$.

Definition (Simple properties)

$$coeffs(p) := \{a_0, ..., a_m\} \qquad lcf(p) := a_m$$
$$red_k(p) := \sum_{i=0}^{m-k} a_i \cdot x_n^i \qquad red(p) := \{red_k(p) \mid k = 0...m\}$$

Building blocks

,

Syl(p,q) :=

RNTHAACHEN UNIVERSITY

Building blocks

 $M_j(p,q) :=$

RNTHAACHEN UNIVERSITY

Building blocks

Definition (Principal subresultant coefficients)

$$psc_i(p,q) := \det(M_i)$$
$$PSC(p,q) := \{psc_i \mid i = 0 \dots \min(k,l)\}$$

Building blocks

Definition (Resultant)

RWITHAACHEN UNIVERSITY

res(p,q) := det(Syl(p,q))

p, q have a **common root** $\Leftrightarrow res(p, q)$ has a root

Definition (Discriminant)

$$disc(p) := res(p, p')$$

p has a **multiple root** \Leftrightarrow disc(p) has a root

