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Introduction
We describe a new project to bring together the communities of Symbolic Computation and
Satisfiability Checking into a new joint community, SC2, supported by a newly accepted EU project
(H2020-FETOPEN-CSA 712689) of the same name. Both communities have long histories, as illus-
trated by the tool development timeline below, but there is currently little interaction. However, they
now share common interests in the development, implementation and application of decision proce-
dures for arithmetic theories. By working together the communities can resolve problems, academic
and industrial, currently beyond the scope of either individually.

This poster gives introductions to the two separate communities, discusses some of the challenges
for the new SC2 community, and the project actions planned for addressing them. The reader is re-
ferred to [2] for more details and full references; and the SC2 website [A] for new information on the
project as it occurs, or to get involved.

Figure 1: Potted History of Computer Algebra Systems and SAT/SMT solvers [1]

Symbolic Computation and Computer Algebra Systems
The use of computers to do algebra rather than simply arithmetic is almost as old as computing itself.
Initial work consisted of programs to do one thing, but this soon led to systems capable of a variety of
tasks. Early examples included SAC, Macsyma and Reduce. An early highlight was Moses’s algorithm
for symbolic integration paired with Risch’s completeness theorem to prove un-integrability. Initially
seen as part of artificial intelligence, the focus soon moved to algorithmics and complexity theory.
We highlight some of the algorithms of particular relevance to this project.

The method of Gröbner Bases [5], which can be seen as a multivariate non-linear generalization
of both Euclid’s algorithm and Gaussian elimination, allows the effective and in many cases efficient
solution of problems involving polynomial ideals and their associated algebraic varieties. The main
commercial general-purpose computer algebra systems (including MAGMA, Maple, Mathematica) all
have independent implementations, and there are specialised (freely downloadable) systems such as
Singular, Macaulay and CoCoA.

Cylindrical Algebraic Decomposition (CAD) [6] is a key tool for many problems in real algebraic
geometry, such as quantifier elimination. It replaced the method of Tarski which had indescribably
high complexity (cannot be bounded by any finite tower of exponentials) with one of complexity dou-
bly exponential in the number of variables. Specialist packages here include QEPCAD-B, the Redlog

package for Reduce and the RegularChains Library of Maple. Another algorithm in this area, Vir-
tual Substitution [8] offers an alternative when the degree of the quantified variables is not too large
(a restriction softened by powerful heuristics).

The community is supported by conferences (e.g. ISSAC, ACA, CASC), journals (e.g. J. Symbolic
Computation); and the ACM SIG in Symbolic and Algebraic Manipulation (SIGSAM).

Satisfiability Checking
The SAT Problem is to check the satisfiability of logical statements over the Booleans. Notable
work includes that of Davis, Putnam, Logemann and Loveland who used resolution for quantifier
elimination; and a combination of enumeration and Boolean constraint propagation (BCP). Another
major improvement was the conflict-driven clause-learning and non-chronological backtracking of
Marques-Silva and Sakallah. While the SAT Problem is known to be NP-complete, SAT solvers have
been developed which can handle inputs with millions of Boolean variables, and are used in many
industrial applications, e.g. in verification and security.

Driven by this success, big efforts were made to enrich propositional SAT-solving for different exis-
tentially quantified theories producing SAT-modulo-theories (SMT) solvers [4]. There exist techniques
for equality logic with uninterpreted functions, array theory, bit-vector arithmetic and quantifier-free
linear real and integer arithmetic. See [3] for an introduction which discusses the highlights so far.
However, the development for quantifier-free non-linear real and integer arithmetic is still in its in-
fancy and progress here is required for applications in the automotive and avionic industries [7].

SMT solvers typically combine a SAT solver with theory solvers as illustrated in Figure 2. A formula
in conjunctive normal form is abstracted to one of pure Boolean propositional logic by replacing each
theory constraint by a fresh proposition. The SAT solver tries to find solutions for this, consulting the
theory solver(s) to check the consistency of constraints. To be SMT-compliant the solvers should:
• work incrementally, i.e. accept additional constraints and recheck making use of previous results;
• support backtracking, i.e. the removal of previously added constraints;
• in case of unsatisfiability return an explanation, e.g. a small inconsistent subset of constraints.

Figure 2: The typical functioning of SMT solvers

Solvers that are able to cope with linear arithmetic problems include Alt-Ergo, CVC4, iSAT3,
MathSAT, OpenSMT2, SMT-RAT, veriT, Yices2, and Z3. Far fewer tools exist for non-linear arithmetic:
iSAT3 uses interval constraint propagation; MiniSmt tries to reduce problems to linear real arithmetic;
Z3 uses an adaptation of the CAD method; while SMT-RAT uses solver modules for CAD, virtual sub-
stitution, Gröbner bases, interval constraint propagation and branch-and-bound. Even fewer SMT
solvers are available for non-linear integer arithmetic.

The community is supported by conferences (e.g. CADE, IJCAR, SMT) and journals (e.g. J. Auto-
mated Reasoning); while a role somewhat analogous to SIGSAM is played by the SatLive Forum.

Project Challenges and Opportunities
SMT solving has its strength in efficient techniques for exploring Boolean structures, learning, com-
bining techniques, and developing dedicated heuristics. Symbolic Computation provides powerful
procedures for sets of arithmetic constraints, and has expertise in simplification and preprocessing.

To allow further exploitation by the Satisfiability Checking community, Symbolic Computation tools
must first be adapted to comply with SMT requirements as set out in the previous section. Cylindri-
cal Algebraic Decomposition, Gröbner Bases and Virtual Substitution are algorithms of particular
interest. However, this is a challenge that requires the expertise of computer algebra developers.

Conversely, Symbolic Computation could profit from exploiting successful SMT ideas, like dedi-
cated data structures, sophisticated heuristics, effective learning techniques, and approaches for in-
strumentality and explanation generation. Incremental CAD procedures now exist, as do prototypes
integrating CDCL-style learning techniques with virtual substitution for linear quantifier elimination.

We are creating a new research community SC2 whose members will ultimately be informed about
both fields, and thus able to combine knowledge and techniques to resolve problems (academic and
industrial) currently beyond the scope of either individually. To achieve this we have an EU Horizon
2020 Coordination and Support Action project (712689) with start date July 2016. Actions include:
Communication platforms: We have started to initiate joint meetings: In 2015 a Dagstuhl Seminar
[B] was dedicated to SC2; at ACA 2016 and CASC 2016 there will be SC2 topical sessions; and
then the first annual SC2 workshop will take place in affiliation with SYNASC 2016 [C]. Other plans
include a summer school for young researchers interested in the area.
Research roadmap: The above platforms will initiate cross-community interactions. Our long-term
objective is to create a research roadmap of opportunities and challenges; identifying within the prob-
lems currently faced in industry, points that can be expected to be solved by the SC2 community.
Standards We aim to create a standard problem specification language for the SC2 community, ex-
tending the SMT-LIB language to handle features needed for Symbolic Computation. This could serve
as a communication protocol for platforms that mix tools; and will be used to develop a set of bench-
marks. Agreeing on a common language, and being able to share challenging problems is an essential
aspect for building a dynamic community.
Your Involvement The project consists of not just the partner institutions but also associates from
both EU and non-EU research institutions and industry. Associates will be regularly informed about
project activities and invited to corresponding events. If you would like to participate please contact
the Project Coordinator James Davenport (J.H.Davenport@bath.ac.uk).
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