Cylindrical Algebraic Decomposition and Real Polynomial Constraints

Christopher W. Brown

Department of Computer Science U. S. Naval Academy

SC² Summer School 2017

CAD and Real Polynomial Constraints

SC² SS 2017 1 / 59

• By "polynomial constraints" we mean a first order formula in elementary real algebra, which we will refer to as <u>Tarski Formulas</u>. Here are some examples:

• By "polynomial constraints" we mean a first order formula in elementary real algebra, which we will refer to as <u>Tarski Formulas</u>. Here are some examples:

•
$$(x_1y_1 < 1 \lor 2x_1 < -1) \land x_1^2 + x_2^2 = 1$$

 By "polynomial constraints" we mean a first order formula in elementary real algebra, which we will refer to as <u>Tarski Formulas</u>. Here are some examples:

•
$$(x_1y_1 < 1 \lor 2x_1 < -1) \land x_1^2 + x_2^2 = 1$$

•
$$\exists x_2 \forall x_3 [x_1 + x_2 < 2 \Rightarrow x_1 x_2^2 - x_3^2 + x_3 < 2]$$

• By "polynomial constraints" we mean a first order formula in elementary real algebra, which we will refer to as <u>Tarski Formulas</u>. Here are some examples:

•
$$(x_1y_1 < 1 \lor 2x_1 < -1) \land x_1^2 + x_2^2 = 1$$

•
$$\exists x_2 \forall x_3 [x_1 + x_2 < 2 \Rightarrow x_1 x_2^2 - x_3^2 + x_3 < 2]$$

 Tarski formulas are a natural language for real polynomial constraints. Restrictions (e.g. to just conjunctions or just equations) don't have nice closure properties.

 By "polynomial constraints" we mean a first order formula in elementary real algebra, which we will refer to as <u>Tarski Formulas</u>. Here are some examples:

•
$$(x_1y_1 < 1 \lor 2x_1 < -1) \land x_1^2 + x_2^2 = 1$$

•
$$\exists x_2 \forall x_3 [x_1 + x_2 < 2 \Rightarrow x_1 x_2^2 - x_3^2 + x_3 < 2]$$

- Tarski formulas are a natural language for real polynomial constraints. Restrictions (e.g. to just conjunctions or just equations) don't have nice closure properties.
- If we fix an order for the free variables in a Tarski formula, we have a natural association between Tarski formulas and geometric objects called <u>semi-algebraic sets</u>.

$$F(x_1,\ldots,x_n) \longleftrightarrow \{(\alpha_1,\ldots,\alpha_n) \in \mathbb{R}^n \mid F(\alpha_1,\ldots,\alpha_n)\}$$

GEOMETRY

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

 $\frac{2}{3} \times \frac{2}{3} = \frac{2}{3} \times \frac{2}{3} = \frac{2}{3} \times \frac{2}$

イロト イロト イヨト イヨト

 Image: Non-Section 2
 Image: Section 2

 SC² SS 2017
 3/59

 SC^2 SS 2017 3/59

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

SC² SS 2017 3/59

< ロ > < 同 > < 回 > < 回 >

SC² SS 2017 3/59

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

SC² SS 2017 3 / 59

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

SC² SS 2017 4 / 59

• Is one of these empty? Which?

$$F_{1} := \left[\begin{array}{c} -91x + 10y^{2} - 7 > 0 \land -54x - 43yx + 63 > 0 \land \\ -79x^{2} + 4y - 61 > 0 \land -49x^{2} + 42y + 97 > 0 \land \\ 27xy + 25y + 72 > 0 \land -47x - 57yx + 1 > 0 \end{array} \right]$$

$$F_2 := \left[\begin{array}{c} 35x + 41yx - 72 > 0 \land -32x^2 - 4y + 45 > 0 \land \\ 42x^2 - 13y + 14 > 0 \land -73x + 21yx - 18 > 0 \land \\ 24x^2 + 7y + 79 > 0 \land -81x - 46yx - 96 > 0 \end{array} \right]$$

SC² SS 2017 4 / 59

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

• Is one of these empty? Which?

$$F_{1} := \left[\begin{array}{c} -91x + 10y^{2} - 7 > 0 \land -54x - 43yx + 63 > 0 \land \\ -79x^{2} + 4y - 61 > 0 \land -49x^{2} + 42y + 97 > 0 \land \\ 27xy + 25y + 72 > 0 \land -47x - 57yx + 1 > 0 \end{array} \right]$$

$$F_{2} := \left[\begin{array}{c} 35x + 41yx - 72 > 0 \land -32x^{2} - 4y + 45 > 0 \land \\ 42x^{2} - 13y + 14 > 0 \land -73x + 21yx - 18 > 0 \land \\ 24x^{2} + 7y + 79 > 0 \land -81x - 46yx - 96 > 0 \end{array} \right]$$

• What is the dimension of the set defined by this Tarski formula?

$$F_3 := \left[x^4 - 4x^3 + 6x^2 + y^2 - 4x + 4y + 5 \le 0 \right]$$

• • • • • • • • • • • • •

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

SC² SS 2017 5 / 59

Tarski formulas are an implicit representation, which has limitations:

Tarski formulas are an implicit representation, which has limitations:

hard to tell if the set is empty

• • • • • • • • • • • • •

Tarski formulas are an implicit representation, which has limitations:

- hard to tell if the set is empty
- no obvious information on the dimension of the set

• • • • • • • • • • • •

Tarski formulas are an implicit representation, which has limitations:

- hard to tell if the set is empty
- no obvious information on the dimension of the set
- complement, intersection and union can be expressed, but without meaningful information

Tarski formulas are an implicit representation, which has limitations:

- hard to tell if the set is empty
- no obvious information on the dimension of the set
- complement, intersection and union can be expressed, but without meaningful information
- projection can be expressed, but without meaningful information

Tarski formulas are an implicit representation, which has limitations:

- hard to tell if the set is empty
- no obvious information on the dimension of the set
- complement, intersection and union can be expressed, but without meaningful information
- projection can be expressed, but without meaningful information

With an explicit representation of semi-algebraic sets we should

Tarski formulas are an implicit representation, which has limitations:

- hard to tell if the set is empty
- no obvious information on the dimension of the set
- complement, intersection and union can be expressed, but without meaningful information
- projection can be expressed, but without meaningful information
- With an explicit representation of semi-algebraic sets we should
 - be able to read off emptiness/non-emptiness (dimension too?)

Tarski formulas are an implicit representation, which has limitations:

- hard to tell if the set is empty
- no obvious information on the dimension of the set
- complement, intersection and union can be expressed, but without meaningful information
- projection can be expressed, but without meaningful information
- With an explicit representation of semi-algebraic sets we should
 - be able to read off emptiness/non-emptiness (dimension too?)
 - be able to produce model points for non-empty sets

Tarski formulas are an implicit representation, which has limitations:

- hard to tell if the set is empty
- no obvious information on the dimension of the set
- complement, intersection and union can be expressed, but without meaningful information
- projection can be expressed, but without meaningful information

With an explicit representation of semi-algebraic sets we should

- be able to read off emptiness/non-emptiness (dimension too?)
- be able to produce model points for non-empty sets
- be able to reasonably compute projection & complement (keys to quantifier elimination!)

Tarski formulas are an implicit representation, which has limitations:

- hard to tell if the set is empty
- no obvious information on the dimension of the set
- complement, intersection and union can be expressed, but without meaningful information
- projection can be expressed, but without meaningful information

With an explicit representation of semi-algebraic sets we should

- be able to read off emptiness/non-emptiness (dimension too?)
- be able to produce model points for non-empty sets
- be able to reasonably compute projection & complement (keys to quantifier elimination!)
- be able to produce representation from Tarski formulas (and it'd be nice if we could convert back to Tarski formulas)

Tarski formulas are an implicit representation, which has limitations:

- hard to tell if the set is empty
- no obvious information on the dimension of the set
- complement, intersection and union can be expressed, but without meaningful information
- projection can be expressed, but without meaningful information

With an explicit representation of semi-algebraic sets we should

- be able to read off emptiness/non-emptiness (dimension too?)
- be able to produce model points for non-empty sets
- be able to reasonably compute projection & complement (keys to quantifier elimination!)
- be able to produce representation from Tarski formulas (and it'd be nice if we could convert back to Tarski formulas)

The point: CAD provides just such an explicit representation

・ロン ・四 ・ ・ ヨン ・ ヨン

Partial or full implementations of CAD out in the world include:

Partial or full implementations of CAD out in the world include:

 Mathematica — CAD available to user and used for many operations: Resolve, Reduce, Plotting, Integration over regions, etc.

A (10) > A (10) > A (10)

Partial or full implementations of CAD out in the world include:

- Mathematica CAD available to user and used for many operations: Resolve, Reduce, Plotting, Integration over regions, etc.
- Maple provides CAD to the user and uses it for the "solve" command
- Maple via the external RegularChains library also provides Q.E.
- Maple via SyNRAC uses CAD behaind the scenes for Q.E.

< 回 > < 三 > < 三 >

Partial or full implementations of CAD out in the world include:

- Mathematica CAD available to user and used for many operations: Resolve, Reduce, Plotting, Integration over regions, etc.
- Maple provides CAD to the user and uses it for the "solve" command
- Maple via the external RegularChains library also provides Q.E.
- Maple via SyNRAC uses CAD behaind the scenes for Q.E.
- Reduce/Redlog uses CAD behind the scenes for Q.E.

< 回 > < 三 > < 三 >

Partial or full implementations of CAD out in the world include:

- Mathematica CAD available to user and used for many operations: Resolve, Reduce, Plotting, Integration over regions, etc.
- Maple provides CAD to the user and uses it for the "solve" command
- Maple via the external RegularChains library also provides Q.E.
- Maple via SyNRAC uses CAD behaind the scenes for Q.E.
- Reduce/Redlog uses CAD behind the scenes for Q.E.
- Qepcad/QepcadB/Tarski provides CAD to user and uses it for Q.E. and simplification

Partial or full implementations of CAD out in the world include:

- Mathematica CAD available to user and used for many operations: Resolve, Reduce, Plotting, Integration over regions, etc.
- Maple provides CAD to the user and uses it for the "solve" command
- Maple via the external RegularChains library also provides Q.E.
- Maple via SyNRAC uses CAD behaind the scenes for Q.E.
- Reduce/Redlog uses CAD behind the scenes for Q.E.
- Qepcad/QepcadB/Tarski provides CAD to user and uses it for Q.E. and simplification
- Z3 & Yices partial implementation of CAD in the NLSAT algorithm

Partial or full implementations of CAD out in the world include:

- Mathematica CAD available to user and used for many operations: Resolve, Reduce, Plotting, Integration over regions, etc.
- Maple provides CAD to the user and uses it for the "solve" command
- Maple via the external RegularChains library also provides Q.E.
- Maple via SyNRAC uses CAD behaind the scenes for Q.E.
- Reduce/Redlog uses CAD behind the scenes for Q.E.
- Qepcad/QepcadB/Tarski provides CAD to user and uses it for Q.E. and simplification
- Z3 & Yices partial implementation of CAD in the NLSAT algorithm
- SMTRAT provides CAD adapted to SMT solving

Partial or full implementations of CAD out in the world include:

- Mathematica CAD available to user and used for many operations: Resolve, Reduce, Plotting, Integration over regions, etc.
- Maple provides CAD to the user and uses it for the "solve" command
- Maple via the external RegularChains library also provides Q.E.
- Maple via SyNRAC uses CAD behaind the scenes for Q.E.
- Reduce/Redlog uses CAD behind the scenes for Q.E.
- Qepcad/QepcadB/Tarski provides CAD to user and uses it for Q.E. and simplification
- Z3 & Yices partial implementation of CAD in the NLSAT algorithm
- SMTRAT provides CAD adapted to SMT solving
- others?

Outline of this session

1 CAD basics

イロト イヨト イヨト イヨト
Outline of this session

- 1 CAD basics
- 2 Phrasing problems, Complexity, improvements

Outline of this session

- 1 CAD basics
- 2 Phrasing problems, Complexity, improvements
- 3 NLSAT SAT/SMT + Collins' ideas

Outline of this session

- 1 CAD basics
- 2 Phrasing problems, Complexity, improvements
- 3 NLSAT SAT/SMT + Collins' ideas
- 4 Applying NLSAT/SMT ideas to computer algebra

Part I: CAD Basics

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

▶ ব ≣ ► ≣ ৩৭৫ SC² SS 2017 8/59

⇒ < ≣ ► ≣ ৩৭৫ SC² SS 2017 9/59

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

 $E \rightarrow 4 E \rightarrow E \rightarrow 9 \land C$ $SC^2 SS 2017 \qquad 9/59$

<ロ> <四> <四> <四> <四> <四</p>

SC² SS 2017 9 / 59

<ロ> <四> <四> <四> <四> <四</p>

 $l_3 < z < u_3$ $l_2 < y < u_2$ $l_1 < x < u_1$

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

SC² SS 2017 9 / 59

<ロト <回 > < 回 > < 回 > < 回 > … 回

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

 $\frac{1}{3} \times \frac{1}{3} \times \frac{1}$

C. W. Brown (USNA)

z

CAD and Real Polynomial Constraints

l < x < u

l(x) < y < u(x)l < x < u

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

$$l(x, y) < z < u(x, y)$$

 $l(x) < y < u(x)$
 $l < x < u$

イロト イヨト イヨト イヨト

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

Note:

We must fix a variable order (here x < y < z) to do this! We define the <u>level</u> of a variable to be its place in this order. E.g. the level of *y* is 2, the level of *z* is 3.

 $x^4 + y^4 < 1 \land 3y - x > 11/8 \land x > 0$

SC² SS 2017 10 / 59

э

$$x^4 + y^4 < 1 \wedge 3y - x > 11/8 \wedge x > 0$$

 $\begin{array}{l} \text{Mathematica syntax for algebraic functions} \\ 0 < x < \text{Root} \left[335872 \# 1^4 + 22528 \# 1^3 + 46464 \# 1^2 + 42592 \# 1 - 317135 \&, 2 \right] \\ \frac{1}{24} (8x + 11) < y < \text{Root} \left[\# 1^4 + x^4 - 1 \&, 2 \right] \end{array}$

$$x^4 + y^4 < 1 \wedge 3y - x > 11/8 \wedge x > 0$$

Mathematica syntax for algebraic functions $0 < x < \text{Root} \left[335872 \# 1^4 + 22528 \# 1^3 + 46464 \# 1^2 + 42592 \# 1 - 317135 \&, 2 \right]$ $\frac{1}{24}(8x + 11) < y < \text{Root} \left[\# 1^4 + x^4 - 1 \&, 2 \right]$

 $\begin{array}{l} \mbox{Maple syntax for algebraic functions} \\ 0 < x < \mbox{RootOf}(335872Z^4 + 22528Z^3 + 46464Z^2 + 42592Z - 317135, \mbox{index} = \mbox{real}[2]) \\ \frac{1}{3}x + \frac{11}{24} < y < \mbox{RootOf}(Z^4 + x^4 - 1, \mbox{index} = \mbox{real}[2]) \end{array}$

$$x^4 + y^4 < 1 \wedge 3y - x > 11/8 \wedge x > 0$$

Mathematica syntax for algebraic functions $0 < x < \text{Root} \left[335872 \# 1^4 + 22528 \# 1^3 + 46464 \# 1^2 + 42592 \# 1 - 317135 \&, 2 \right]$ $\frac{1}{24}(8x + 11) < y < \text{Root} \left[\# 1^4 + x^4 - 1 \&, 2 \right]$

QEPCAD B syntax for algebraic functions $0 < x < root_2 335872x^4 + 22528x^3 + 46464x^2 + 42592x - 317135$ $\frac{1}{24}(8x + 11) < y < root_2 y^4 + x^4 - 1$

Definition: The indexed root expression

 $x_k \sigma \operatorname{root}_i p(x_1, \ldots, x_k)$

where $\sigma \in \{<, \leq, >, \geq, =, \neq\}$ and $p \in \mathbb{Z}[x_1, \dots, x_k]$ is *true* at point $(\alpha_1, \dots, \alpha_k) \in \mathbb{R}^k$ if

Definition: The indexed root expression

 $x_k \sigma \operatorname{root}_i p(x_1, \ldots, x_k)$

where $\sigma \in \{<, \leq, >, \geq, =, \neq\}$ and $p \in \mathbb{Z}[x_1, \dots, x_k]$ is *true* at point $(\alpha_1, \dots, \alpha_k) \in \mathbb{R}^k$ if

• $p(\alpha_1, \ldots, \alpha_{k-1}, z)$ has at least *i* distinct real roots, and

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Definition: The indexed root expression

 $x_k \sigma \operatorname{root}_i p(x_1, \ldots, x_k)$

where $\sigma \in \{<, \leq, >, \geq, =, \neq\}$ and $p \in \mathbb{Z}[x_1, \dots, x_k]$ is *true* at point $(\alpha_1, \dots, \alpha_k) \in \mathbb{R}^k$ if

- $p(\alpha_1, \ldots, \alpha_{k-1}, z)$ has at least *i* distinct real roots, and
- α_k σ β holds, where β is the *i*th distinct root of p(α₁,..., α_{k-1}, z), in ascending order.

・ 回 ト く ヨ ト く ヨ ト 二 ヨ

Definition: The indexed root expression

 $x_k \sigma \operatorname{root}_i p(x_1, \ldots, x_k)$

where $\sigma \in \{<, \leq, >, \geq, =, \neq\}$ and $p \in \mathbb{Z}[x_1, \dots, x_k]$ is *true* at point $(\alpha_1, \dots, \alpha_k) \in \mathbb{R}^k$ if

- $p(\alpha_1, \ldots, \alpha_{k-1}, z)$ has at least *i* distinct real roots, and
- α_k σ β holds, where β is the *i*th distinct root of p(α₁,..., α_{k-1}, z), in ascending order.
- In this (QEPCAD B syntax), σ and "root" form a new predicate.

(日本)(日本)(日本)(日本)

Definition: The indexed root expression

 $x_k \sigma \operatorname{root}_i p(x_1, \ldots, x_k)$

where $\sigma \in \{<, \leq, >, \geq, =, \neq\}$ and $p \in \mathbb{Z}[x_1, \dots, x_k]$ is *true* at point $(\alpha_1, \dots, \alpha_k) \in \mathbb{R}^k$ if

• $p(\alpha_1, \ldots, \alpha_{k-1}, z)$ has at least *i* distinct real roots, and

 α_k σ β holds, where β is the *i*th distinct root of p(α₁,..., α_{k-1}, z), in ascending order.

- In this (QEPCAD B syntax), σ and "root" form a new predicate.
- In the context of cell descriptions, we will require that x_k is the highest-level variable in p, and that the bounds on lower-level variables guarantee that p(α₁,..., α_{k-1}, z) has at least *i* distinct real roots.

Definition: The indexed root expression

 $x_k \sigma \operatorname{root}_i p(x_1, \ldots, x_k)$

where $\sigma \in \{<, \leq, >, \geq, =, \neq\}$ and $p \in \mathbb{Z}[x_1, \dots, x_k]$ is *true* at point $(\alpha_1, \dots, \alpha_k) \in \mathbb{R}^k$ if

• $p(\alpha_1, \ldots, \alpha_{k-1}, z)$ has at least *i* distinct real roots, and

 α_k σ β holds, where β is the *i*th distinct root of p(α₁,..., α_{k-1}, z), in ascending order.

- In this (QEPCAD B syntax), σ and "root" form a new predicate.
- In the context of cell descriptions, we will require that x_k is the highest-level variable in p, and that the bounds on lower-level variables guarantee that p(α₁,..., α_{k-1}, z) has at least *i* distinct real roots.
- Mathematica's "Root" expressions count multiplicities.

We need the indexed root expressions that define cell boundaries to be well-behaved over the base of the cell:

We need the indexed root expressions that define cell boundaries to be well-behaved over the base of the cell:

$$y = root_1 y^2 - x^2 + 1$$

SC² SS 2017 12 / 59

A (10) > (10)

We need the indexed root expressions that define cell boundaries to be well-behaved over the base of the cell: they should define <u>functions</u>

$$y = root_1 y^2 - x^2 + 1$$

SC² SS 2017 12 / 59

< ロ > < 同 > < 回 > < 回 >

We need the indexed root expressions that define cell boundaries to be well-behaved over the base of the cell: they should define functions

We need the indexed root expressions that define cell boundaries to be well-behaved over the base of the cell: they should define <u>functions</u> that are continuous

$$+2y-x^2$$

$$y = \operatorname{root}_1 y^3 - 3y^2 + 2y - x^2$$

We need the indexed root expressions that define cell boundaries to be well-behaved over the base of the cell: they should define <u>functions</u> that are continuous

$$y = root_1 2y^2 - x^2$$

SC² SS 2017 12 / 59

< ロ > < 同 > < 回 > < 回 >

We need the indexed root expressions that define cell boundaries to be well-behaved over the base of the cell: they should define <u>functions</u> that are continuous, non-intersecting

$$y = root_1 2y^2 - x^2$$

SC² SS 2017 12 / 59

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
We need the indexed root expressions that define cell boundaries to be well-behaved over the base of the cell: they should define <u>functions</u> that are continuous, non-intersecting, and (perhaps) smooth.

$$y = root_1 2y^2 - x^2$$

SC² SS 2017 12 / 59

- A TE N - A TE N

<u>Delineability</u> is a condition that captures what we need to define boundaries of cylindrical cells.

3

<u>Delineability</u> is a condition that captures what we need to define boundaries of cylindrical cells.

Definition: polynomial $f(x_1, ..., x_k)$ is <u>delineable</u> over connected region $S \subseteq \mathbb{R}^{k-1}$ if

- for all $\alpha \in S$ we have $f(\alpha, x_k) \neq 0$
- the the set of real roots of f(α, x_k), α ∈ S is either empty or it consists of finitely many continuous functions θ₁ < ··· < θ_t from S to ℝ, with t ≥ 1; and, in the latter case
- there exist positive integers m₁,..., m_t such that, for all α ∈ S and all *i*, m_i is the multiplicity of θ_i(α) as a root of f(α, x_k).

<u>Delineability</u> is a condition that captures what we need to define boundaries of cylindrical cells.

Definition: polynomial $f(x_1, ..., x_k)$ is <u>delineable</u> over connected region $S \subseteq \mathbb{R}^{k-1}$ if

- for all $\alpha \in S$ we have $f(\alpha, x_k) \neq 0$
- the the set of real roots of f(α, x_k), α ∈ S is either empty or it consists of finitely many continuous functions θ₁ < ··· < θ_t from S to ℝ, with t ≥ 1; and, in the latter case
- there exist positive integers m₁,..., m_t such that, for all α ∈ S and all *i*, m_i is the multiplicity of θ_i(α) as a root of f(α, x_k).

Set $\{f_1, \ldots, f_r\}$ of *k*-level polynomials is <u>delineable</u> if $f_1 f_2 \cdots f_r$ is delineable.

<u>Delineability</u> is a condition that captures what we need to define boundaries of cylindrical cells.

Definition: polynomial $f(x_1, ..., x_k)$ is <u>delineable</u> over connected region $S \subseteq \mathbb{R}^{k-1}$ if

- for all $\alpha \in S$ we have $f(\alpha, x_k) \neq 0$
- the the set of real roots of f(α, x_k), α ∈ S is either empty or it consists of finitely many continuous functions θ₁ < ··· < θ_t from S to ℝ, with t ≥ 1; and, in the latter case
- there exist positive integers m₁,..., m_t such that, for all α ∈ S and all *i*, m_i is the multiplicity of θ_i(α) as a root of f(α, x_k).

Set $\{f_1, \ldots, f_r\}$ of *k*-level polynomials is <u>delineable</u> if $f_1 f_2 \cdots f_r$ is delineable.

The θ_i 's are referred to as the <u>sections</u> of *f* over *S*.

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

SC² SS 2017 14 / 59

-2

A D > A B > A B > A B >

C. W. Brown (USNA) CAD and Re

CAD and Real Polynomial Constraints

SC² SS 2017 14 / 59

æ

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

 $SC^2 SS 2017 \qquad 14/59$

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

SC² SS 2017 14 / 59

э

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

SC² SS 2017 15 / 59

æ

イロト イヨト イヨト イヨト

•
$$0 < x < \operatorname{root}_2 2x^2 - 1 \land x < y < \operatorname{root}_2 2x^2 - 1$$

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

SC² SS 2017 15 / 59

æ

イロト イヨト イヨト イヨト

•
$$0 < x < \operatorname{root}_2 2x^2 - 1 \land x < y < \operatorname{root}_2 2x^2 - 1$$

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

SC² SS 2017 15 / 59

æ

•
$$0 < x < \operatorname{root}_2 2x^2 - 1 \land x < y < \operatorname{root}_2 2x^2 - 1$$

• $0 < x < \operatorname{root}_2 2x^2 - 1 \land y = \operatorname{root}_2 2x^2 - 1$

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

SC² SS 2017 15 / 59

æ

•
$$0 < x < \operatorname{root}_2 2x^2 - 1 \land x < y < \operatorname{root}_2 2x^2 - 1$$

• $0 < x < \operatorname{root}_2 2x^2 - 1 \land y = \operatorname{root}_2 2x^2 - 1$

æ

•
$$0 < x < \operatorname{root}_2 2x^2 - 1 \land x < y < \operatorname{root}_2 2x^2 - 1$$

• $0 < x < \operatorname{root}_2 2x^2 - 1 \land y = \operatorname{root}_2 2x^2 - 1$
• $x = \operatorname{root}_2 2x^2 - 1 \land y = \operatorname{root}_2 2x^2 - 1$

SC² SS 2017 15 / 59

æ

•
$$0 < x < \operatorname{root}_2 2x^2 - 1 \land x < y < \operatorname{root}_2 2x^2 - 1$$

• $0 < x < \operatorname{root}_2 2x^2 - 1 \land y = \operatorname{root}_2 2x^2 - 1$
• $x = \operatorname{root}_2 2x^2 - 1 \land y = \operatorname{root}_2 2x^2 - 1$

If the *k*-level bound for a cell is given as an open interval, the cell is said to be a *k*-level sector. Otherwise it is a *k*-level section.

Cylindrical Cell - a formal definition

Definition: A <u>cylindrical algebraic cell</u> in \mathbb{R}^k .

- 1. \mathbb{R}^0 is a cylindrical algebraic cell in \mathbb{R}^0 .
- 2. if *C* is a cylindrical algebraic cell in \mathbb{R}^k then
 - a) $\{(\alpha_1, \ldots, \alpha_k, \beta) \in C \times \mathbb{R} \mid \beta = \text{root}_i f(\alpha, z)\}$ where *f* is delineable over *C* with at least *i* sections, is a cylindrical algebraic cell in \mathbb{R}^{k+1} ,
 - b) $\{(\alpha_1, \ldots, \alpha_k, \beta) \in \mathbb{C} \times \mathbb{R} \mid \beta > \text{root}_i f(\alpha, z) \text{ and } \beta < \text{root}_j g(\alpha, z)\}$ where $\{f, g\}$ is delineable over \mathbb{C} , f having at least i sections, g having at least j sections, and section $\text{root}_i f$ everywhere less than section $\text{root}_j g$, is a cylindrical algebraic cell in \mathbb{R}^{k+1} ,
- 3. nothing else is a cylindrical cell.

向下 イヨト イヨト

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

 $SC^2 SS 2017$ 17/59

イロト イヨト イヨト イヨト

• a cylindrical cell is a semi-algebraic set

< ロ > < 同 > < 回 > < 回 >

- a cylindrical cell is a semi-algebraic set
- cylindrical cells are exclicitly represented objects!

< 6 b

- a cylindrical cell is a semi-algebraic set
- cylindrical cells are exclicitly represented objects!
- projection is trivial for cylindrical cells

< 6 b

- a cylindrical cell is a semi-algebraic set
- cylindrical cells are exclicitly represented objects!
- projection is trivial for cylindrical cells
- determining the dimension of a cylindrical cell is trivial

- a cylindrical cell is a semi-algebraic set
- cylindrical cells are exclicitly represented objects!
- projection is trivial for cylindrical cells
- determining the dimension of a cylindrical cell is trivial
- producing example points in the cell is relatively easy (i.e. only involves univariate polynomial real root isolation), contrast that with a set defined by an arbitrary formula!

4 **A** N A **B** N A **B** N

- a cylindrical cell is a semi-algebraic set
- cylindrical cells are exclicitly represented objects!
- projection is trivial for cylindrical cells
- determining the dimension of a cylindrical cell is trivial
- producing example points in the cell is relatively easy (i.e. only involves univariate polynomial real root isolation), contrast that with a set defined by an arbitrary formula!
- determining whether a given point is in the cell is relatively easy, which is not always the case with explicitly represented objects

4 D K 4 B K 4 B K 4 B K

- a cylindrical cell is a semi-algebraic set
- cylindrical cells are exclicitly represented objects!
- projection is trivial for cylindrical cells
- determining the dimension of a cylindrical cell is trivial
- producing example points in the cell is relatively easy (i.e. only involves univariate polynomial real root isolation), contrast that with a set defined by an arbitrary formula!
- determining whether a given point is in the cell is relatively easy, which is not always the case with explicitly represented objects
- cylindrical cells have nice descriptions in terms of algebraic functions, though they are <u>not</u> tarski formulas

- a cylindrical cell is a semi-algebraic set
- cylindrical cells are exclicitly represented objects!
- projection is trivial for cylindrical cells
- determining the dimension of a cylindrical cell is trivial
- producing example points in the cell is relatively easy (i.e. only involves univariate polynomial real root isolation), contrast that with a set defined by an arbitrary formula!
- determining whether a given point is in the cell is relatively easy, which is not always the case with explicitly represented objects
- cylindrical cells have nice descriptions in terms of algebraic functions, though they are <u>not</u> tarski formulas
- it is possible to produce a tarski formula description of a cell

3

Let $S \subseteq \mathbb{R}^3$ be defined by $F := [x^2 + y^2 + z^2 < 1 \land xyz < 1/8]$

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

SC² SS 2017 18 / 59

Let $S \subseteq \mathbb{R}^3$ be defined by $F := [x^2 + y^2 + z^2 < 1 \land xyz < 1/8]$ $\underbrace{ \text{cylindrical algebraic cell } C \subseteq S \\ \text{root}_1 \ z^2 + y^2 + x^2 - 1 < z < \text{root}_2 \ z^2 + y^2 + x^2 - 1 \\ \text{root}_1 \ y^2 + x^2 - 1 < y < \text{root}_1 \ 64x^2y^4 + 64x^4y^2 - 64x^2y^2 + 1 \\ \text{root}_1 \ 4x^3 - 4x - 1 < x < \text{root}_2 \ 4x^3 - 4x - 1 \end{aligned}$

Let $S \subseteq \mathbb{R}^3$ be defined by $F := [x^2 + y^2 + z^2 < 1 \land xyz < 1/8]$ cylindrical algebraic cell $C \subseteq S$

 $\operatorname{root}_1 y^2 + x^2 - 1 < y < \operatorname{root}_1 64x^2y^4 + 64x^4y^2 - 64x^2y^2 + 1$ $\operatorname{root}_1 4x^3 - 4x - 1 < x < \operatorname{root}_2 4x^3 - 4x - 1$

Let $S \subseteq \mathbb{R}^3$ be defined by $F := [x^2 + y^2 + z^2 < 1 \land xyz < 1/8]$ $\underbrace{ \text{cylindrical algebraic cell } C \subseteq S \\ \text{root}_1 \ z^2 + y^2 + x^2 - 1 < z < \text{root}_2 \ z^2 + y^2 + x^2 - 1 \\ \text{root}_1 \ y^2 + x^2 - 1 < y < \text{root}_1 \ 64x^2y^4 + 64x^4y^2 - 64x^2y^2 + 1 \\ \text{root}_1 \ 4x^3 - 4x - 1 < x < \text{root}_2 \ 4x^3 - 4x - 1 \end{aligned}$

Let
$$S \subseteq \mathbb{R}^3$$
 be defined by $F := [x^2 + y^2 + z^2 < 1 \land xyz < 1/8]$

$$\frac{\text{cylindrical algebraic cell } C \subseteq S}{\text{root}_1 \ z^2 + y^2 + x^2 - 1} < z < \text{root}_2 \ z^2 + y^2 + x^2 - 1}$$

$$\frac{1}{\text{root}_1 \ y^2 + x^2 - 1} < y < \text{root}_1 \ 64x^2y^4 + 64x^4y^2 - 64x^2y^2 + 1}{\text{root}_1 \ 4x^3 - 4x - 1} < x < \text{root}_2 \ 4x^3 - 4x - 1$$

Find a sample/model point $\alpha = ($, ,) $\in C$

イロト 不得 トイヨト イヨト 二日

Let $S \subseteq \mathbb{R}^3$ be defined by $F := [x^2 + y^2 + z^2 < 1 \land xyz < 1/8]$

cylindrical algebraic cell $C \subseteq S$

Find a sample/model point $\alpha = ($, ,) $\in C$

Via unvivarate real root isolation on the bounds for *x* we get $-0.8375... < x < -0.2695... \rightarrow$ choose x = -1/2

Let $S \subseteq \mathbb{R}^3$ be defined by $F := [x^2 + y^2 + z^2 < 1 \land xyz < 1/8]$

cylindrical algebraic cell $C \subseteq S$

Find a sample/model point $\alpha = (-1/2, \dots,) \in C$

Via unvivarate real root isolation on the bounds for *x* we get $-0.8375... < x < -0.2695... \rightarrow$ choose x = -1/2

Let $S \subseteq \mathbb{R}^3$ be defined by $F := [x^2 + y^2 + z^2 < 1 \land xyz < 1/8]$

cylindrical algebraic cell $C \subseteq S$

Find a sample/model point $\alpha = (-1/2, \dots,) \in C$

Substitute x = -1/2 into the bounds for y getting root₁ $y^2 + (-\frac{1}{2})^2 - 1 < y < \text{root}_1 64 (-\frac{1}{2})^2 y^4 + 64 (-\frac{1}{2})^4 y^2 - 64 (-\frac{1}{2})^2 y^2 + 1$ Via unvivarate real root isolation we get $-0.8660 \dots < y < -0.8090 \dots \longrightarrow$ choose y = -53/64 = -0.828125

イロト 不得 トイヨト イヨト ヨー ろくの

Let $S \subseteq \mathbb{R}^3$ be defined by $F := [x^2 + y^2 + z^2 < 1 \land xyz < 1/8]$

cylindrical algebraic cell $C \subseteq S$

Find a sample/model point $\alpha = (-1/2, -53/64,) \in C$

Substitute x = -1/2 into the bounds for *y* getting root₁ $y^2 + (-\frac{1}{2})^2 - 1 < y < root_1 64 (-\frac{1}{2})^2 y^4 + 64 (-\frac{1}{2})^4 y^2 - 64 (-\frac{1}{2})^2 y^2 + 1$ Via unvivarate real root isolation we get $-0.8660... < y < -0.8090... \longrightarrow$ choose y = -53/64 = -0.828125

イロト 不得 トイヨト イヨト ヨー ろくの

Let $S \subseteq \mathbb{R}^3$ be defined by $F := [x^2 + y^2 + z^2 < 1 \land xyz < 1/8]$

cylindrical algebraic cell $C \subseteq S$

Find a sample/model point $\alpha = (-1/2, -53/64,) \in C$

Substitute *x*, *y* = -1/2, -53/64 into the bounds for *z* getting root₁ $z^2 + (-\frac{53}{64})^2 + (-\frac{1}{2})^2 - 1 < z < \text{root}_2 z^2 + (-\frac{53}{64})^2 + (-\frac{1}{2})^2 - 1$ Via unvivarate real root isolation we get $-0.2533... < z < 0.2533... \rightarrow \text{choose } z = 1/8 = 0.125$

C. W. Brown (USNA)

イロト 不得 トイヨト イヨト ヨー ろくの
Cylindrical Cell - a closing example

Let $S \subseteq \mathbb{R}^3$ be defined by $F := [x^2 + y^2 + z^2 < 1 \land xyz < 1/8]$

cylindrical algebraic cell $C \subseteq S$

Find a sample/model point $\alpha = (-1/2, -53/64, 1/8) \in C$

Substitute *x*, *y* = -1/2, -53/64 into the bounds for *z* getting root₁ $z^2 + (-\frac{53}{64})^2 + (-\frac{1}{2})^2 - 1 < z < \text{root}_2 z^2 + (-\frac{53}{64})^2 + (-\frac{1}{2})^2 - 1$ Via unvivarate real root isolation we get $-0.2533... < z < 0.2533... \rightarrow \text{choose } z = 1/8 = 0.125$

C. W. Brown (USNA)

イロト 不得 トイヨト イヨト ヨー ろくの

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

SC² SS 2017 19 / 59

2

Definition: A set *D* of cylindrical cells in \mathbb{R}^n is <u>cylindrically arranged</u> if for all $c_1, c_2 \in D$ and $0 < k \leq n$, the projections onto \mathbb{R}^k of c_1 and c_2 are either identical or disjoint.

< ロ > < 同 > < 回 > < 回 >

Definition: A set *D* of cylindrical cells in \mathbb{R}^n is <u>cylindrically arranged</u> if for all $c_1, c_2 \in D$ and $0 < k \leq n$, the projections onto \mathbb{R}^k of c_1 and c_2 are either identical or disjoint.

Definition: A set *D* of cylindrical cells in \mathbb{R}^n is <u>cylindrically arranged</u> if for all $c_1, c_2 \in D$ and $0 < k \leq n$, the projections onto \mathbb{R}^k of c_1 and c_2 are either identical or disjoint.

Definition: A set *D* of cylindrical cells in \mathbb{R}^n is <u>cylindrically arranged</u> if for all $c_1, c_2 \in D$ and $0 < k \leq n$, the projections onto \mathbb{R}^k of c_1 and c_2 are either identical or disjoint.

Definition: A set *D* of cylindrical cells in \mathbb{R}^n is <u>cylindrically arranged</u> if for all $c_1, c_2 \in D$ and $0 < k \leq n$, the projections onto \mathbb{R}^k of c_1 and c_2 are either identical or disjoint.

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

SC² SS 2017 19 / 59

Theorem: Suppose semi-algebraic set *S* is definined as a union of elements in a set D_n of disjoint cylindrical cells in \mathbb{R}^n that are cylindrically arranged. For $0 \le k \le n$, define $D_k = \{\pi_k(c) \mid c \in D_n\}$.

• The elements of D_k are disjoint cylindrical cells in \mathbb{R}^k that are cylindrically arranged, and

•
$$\pi_k(S) = \bigcup_{c \in D_k} c$$

4 **A** N A **B** N A **B** N

Time out to compute

$$x^4 + y^2 < 1 \wedge (x + y)(x - y) < 0 \wedge y > -x - 1 \wedge (x + 1/2) > 0$$

SC² SS 2017 21 / 59

2

Time out to compute

$$\begin{aligned} x^{4} + y^{2} < 1 \land (x + y)(x - y) < 0 \land y > -x - 1 \land (x + 1/2) > 0 \\ > \text{ solve}([x^{4} + y^{2} < 1, (x + y)^{*}(x - y) < 0, y > -x - 1, (x + 1/2) > 0], \{x, y\}); \\ \text{memory used=416.3MB, alloc=110.3MB, time=3.86} \\ \{-1/2 < x, x < 0, y < x, -x - 1 < y\}, \\ \{-1/2 < x, x < 0, y < x, -x - 1 < y\}, \\ \{-1/2 < x, x < 0, y < (-x + 1), -x < y\}, \{x = 0, -1 < y, y < 0\}, \\ \{x = 0, 0 < y, y < 1\}, \{0 < x, x < \text{RootOf}(Z^{4} + Z^{2} - 1, 0.75 \dots 0.8125), y < (-x^{4} + 1)^{1/2}\} \end{aligned}$$

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

SC² SS 2017 21 / 59

æ

Time out to compute

<mark>১৮∢≣১ ≣ ৩</mark>৭৫ SC² SS 2017 21/59

Cylindrical formula: start with the disjunction of defining formulas for the cells in D_k , and level by level factor out common subexpressions.

$$0 < x < 1 \land y < -1$$

$$0 < x < 1 \land 0 < y < \operatorname{root}_{2} y^{2} + x^{2} - 1$$

$$x = 0 \land y < -1$$

$$1 < x < \operatorname{root}_{2} x^{2} - 2 \land y < -1$$

$$1 < x < \operatorname{root}_{2} x^{2} - 2 \land \operatorname{root}_{1} (x - 1)y - 1 < y$$

$$\downarrow$$

$$0 < x < 1 \land \left(\begin{array}{c} y < -1 \lor \\ 0 < y < \text{root}_2 \ y^2 + x^2 - 1 \end{array} \right)$$

$$> x = 0 \land y < -1$$

$$> 1 < x < \text{root}_2 x^2 - 2 \land \left(\begin{array}{c} y < -1 \lor \\ \text{root}_1 (x - 1) y - 1 < y \end{array} \right)$$

< ロ > < 同 > < 回 > < 回 >

Cylindrically Arranged Cells — let's sum up

Describing a semi-algebraic set as a union of cylindrically arranged cells, whether factored into a cylindrical formula or not, is a natural idea.

- 1. It is an explicit description (SAT/dimension/model-points/projection are easy).
- 2. It gives us a natural "split by cases" description.

3. However:

How could we compute complement in this representation? How we could construct such a thing from a Tarski formula?

So we have to look one step further to find an explicit representation that meets all of our goals ...

CAD — a definition ... finally

Definition: A Cylindrical Algebraic Decomposition (CAD) is a decomposition of \mathbb{R}^n into cylindrical cells that are cylindrically arranged.

CAD — a definition ... finally

Definition: A Cylindrical Algebraic Decomposition (CAD) is a decomposition of \mathbb{R}^n into cylindrical cells that are cylindrically arranged.

 On its own, a CAD does not represent a semi-algebraic set. But if we attach truth labels to each cell, then this "CAD+truth-labels" can be viewed as a representation of the semi-algebraic set defined by the union of the cells labeled true.

・ 同 ト ・ ヨ ト ・ ヨ ト

CAD — a definition ... finally

Definition: A Cylindrical Algebraic Decomposition (CAD) is a decomposition of \mathbb{R}^n into cylindrical cells that are cylindrically arranged.

- On its own, a CAD does not represent a semi-algebraic set. But if we attach truth labels to each cell, then this "CAD+truth-labels" can be viewed as a representation of the semi-algebraic set defined by the union of the cells labeled true.
- In this representation, complement is easy: just toggle the cells' truth values! So all that's left is this: how, given a Tarski formula, do we construct a CAD+truth-values representation of the same semi-algebraic set?

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

SC² SS 2017 25 / 59

CAD — the CAD construction problem

Problem: Given quantifier-free Tarski formula *F* in variables x_1, \ldots, x_n , produce a CAD of \mathbb{R}^n that is <u>truth-invariant</u> for *F*.

< ロ > < 同 > < 回 > < 回 >

CAD — the CAD construction problem

Problem: Given quantifier-free Tarski formula *F* in variables x_1, \ldots, x_n , produce a CAD of \mathbb{R}^n that is <u>truth-invariant</u> for *F*.

Note 1: When we say that a CAD is *g*-invariant for some function *g* : ℝⁿ → *Q*, we mean that the for each cell in the CAD it holds that the value of *g* at any two points in the cell is the same. Here, *g* is *F*, and *Q* is {*true*, *false*}.

・ 同 ト ・ ヨ ト ・ ヨ ト

CAD — the CAD construction problem

Problem: Given quantifier-free Tarski formula *F* in variables x_1, \ldots, x_n , produce a CAD of \mathbb{R}^n that is <u>truth-invariant</u> for *F*.

- Note 1: When we say that a CAD is *g*-invariant for some function *g* : ℝⁿ → *Q*, we mean that the for each cell in the CAD it holds that the value of *g* at any two points in the cell is the same. Here, *g* is *F*, and *Q* is {*true*, *false*}.
- Note 2: When we say "produce a CAD", we intend that one has each cell represented so that a sample point or cylindrical formula defining the cell is either stored or can be easily produced.

• Consider $F = \{x^2 + y^2 - 1 < 0 \land (x - y)(xy - 1/4) < 0\}$

SC² SS 2017 27 / 59

• Consider $F = \{x^2 + y^2 - 1 < 0 \land (x - y)(xy - 1/4) < 0\}$

• Let
$$A = \{x^2 + y^2 - 1, x - y, xy - 1/4\}$$
 (i.e. the poly's in *F*)

• Consider $F = \{x^2 + y^2 - 1 < 0 \land (x - y)(xy - 1/4) < 0\}$

• Let $A = \{x^2 + y^2 - 1, x - y, xy - 1/4\}$ (i.e. the poly's in *F*)

• If CAD *D* is sign invariant for *A* then it is truth invariant for *F*, where "sign invariant for *A*" means if p_1, \ldots, p_k are the elements of *A*, *D* is invariant for the function $g(x) = (\text{sgn}(p_1(x)), \ldots, \text{sgn}(p_k(x)))$.

(日本)(日本)(日本)(日本)

- Consider $F = \{x^2 + y^2 1 < 0 \land (x y)(xy 1/4) < 0\}$
- Let $A = \{x^2 + y^2 1, x y, xy 1/4\}$ (i.e. the poly's in *F*)
- If CAD *D* is sign invariant for *A* then it is truth invariant for *F*, where "sign invariant for *A*" means if p_1, \ldots, p_k are the elements of *A*, *D* is invariant for the function $g(x) = (\text{sgn}(p_1(x)), \ldots, \text{sgn}(p_k(x)))$.

Focus on sign-invariant CADs!

(日本)(日本)(日本)(日本)

Example:
$$F = [x^2 - 2 >= 0 \land 8x^3 - 56x - 49 < 0]$$

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

SC² SS 2017 28 / 59

イロン イロン イヨン イヨン 三日

Example:
$$F = [x^2 - 2 \ge 0 \land 8x^3 - 56x - 49 < 0]$$

$$A = \{x^2 - 2, 8x^3 - 56x - 49\}$$

SC² SS 2017 28 / 59

イロン イロン イヨン イヨン 三日

Example:
$$F = [x^2 - 2 \ge 0 \land 8x^3 - 56x - 49 < 0]$$

$$A = \{x^2 - 2, 8x^3 - 56x - 49\}$$

Univariate real root isolation on of the elements of A ...

$$\beta_1 = -1.97..., \alpha_1 = -1.41..., \beta_2 = -1.03..., \alpha_2 = 1.41..., \beta_3 = 3.00...$$

CAD and Real Polynomial Constraints

Example:
$$F = [x^2 - 2 \ge 0 \land 8x^3 - 56x - 49 < 0]$$

$$A = \{x^2 - 2, 8x^3 - 56x - 49\}$$

Univariate real root isolation on of the elements of A ...

$$\beta_1 = -1.97..., \alpha_1 = -1.41..., \beta_2 = -1.03..., \alpha_2 = 1.41..., \beta_3 = 3.00...$$

 $(-\infty,\beta_1), [\beta_1], (\beta_1,\alpha_1), [\alpha_1], (\alpha_1,\beta_2), [\beta_2], (\beta_2,\alpha_2), [\alpha_2], (\alpha_2,\beta_3), [\beta_3], (\beta_3,\infty)$

Example:
$$F = [x^2 - 2 \ge 0 \land 8x^3 - 56x - 49 < 0]$$

$$A = \{x^2 - 2, 8x^3 - 56x - 49\}$$

Univariate real root isolation on of the elements of A ...

$$\beta_1 = -1.97..., \alpha_1 = -1.41..., \beta_2 = -1.03..., \alpha_2 = 1.41..., \beta_3 = 3.00...$$

 $(-\infty, \beta_1), [\beta_1], (\beta_1, \alpha_1), [\alpha_1], (\alpha_1, \beta_2), [\beta_2], (\beta_2, \alpha_2), [\alpha_2], (\alpha_2, \beta_3), [\beta_3], (\beta_3, \infty)$ -4 -3/2 -5/4 0 2 4

Example:
$$F = [x^2 - 2 \ge 0 \land 8x^3 - 56x - 49 < 0]$$

$$A = \{x^2 - 2, 8x^3 - 56x - 49\}$$

Univariate real root isolation on of the elements of A ...

$$\beta_1 = -1.97..., \alpha_1 = -1.41..., \beta_2 = -1.03..., \alpha_2 = 1.41..., \beta_3 = 3.00...$$

э

Example:
$$F = [x^2 - 2 \ge 0 \land 8x^3 - 56x - 49 < 0]$$

$$A = \{x^2 - 2, 8x^3 - 56x - 49\}$$

Univariate real root isolation on of the elements of A ...

$$\beta_1 = -1.97..., \alpha_1 = -1.41..., \beta_2 = -1.03..., \alpha_2 = 1.41..., \beta_3 = 3.00...$$

C. W. Brown (USNA)

э

Example:
$$F = [x^2 - 2 \ge 0 \land 8x^3 - 56x - 49 < 0]$$

$$A = \{x^2 - 2, 8x^3 - 56x - 49\}$$

Univariate real root isolation on of the elements of A ...

$$\beta_1 = -1.97..., \alpha_1 = -1.41..., \beta_2 = -1.03..., \alpha_2 = 1.41..., \beta_3 = 3.00...$$

C. W. Brown (USNA)

2D Example: $[36y^2 - 2x^3 - 9x^2 < 0 \land (x+2)y - 2 < 0]$ $A := \{36y^2 - 2x^3 - 9x^2, (x+2)y - 2\}$

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

SC² SS 2017 29 / 59

2D Example: $[36y^2 - 2x^3 - 9x^2 < 0 \land (x+2)y - 2 < 0]$ $A := \{36y^2 - 2x^3 - 9x^2, (x+2)y - 2\}$

2D Example: $[36y^2 - 2x^3 - 9x^2 < 0 \land (x+2)y - 2 < 0]$ $A := \{36y^2 - 2x^3 - 9x^2, (x+2)y - 2\}$

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

SC² SS 2017 29 / 59

2D Ex: $[36y^2 - 2x^3 - 9x^2 < 0 \land (x+2)y - 2 < 0]$ $\{p,q\} \cup \{ldcf_y(q), disc_y(p), res_y(p,q)\}$

2D Ex: $[36y^2 - 2x^3 - 9x^2 < 0 \land (x+2)y - 2 < 0]$ $\{p,q\} \cup \{ldcf_y(q), disc_y(p), res_y(p,q)\}$

30 / 59

30 / 59

CAD and Real Polynomial Constraints

30 / 59

2D Ex: $[36y^2 - 2x^3 - 9x^2 < 0 \land (x+2)y - 2 < 0]$ $\{p,q\} \cup \{\mathsf{ldcf}_y(q), \mathsf{disc}_y(p), \mathsf{res}_y(p,q)\}$

C. W. Brown (USNA)

C. W. Brown (USNA)

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

CAD and Real Polynomial Constraints

30 / 59

17 30 / 59

30 / 59

CAD and Real Polynomial Constraints

CAD and Real Polynomial Constraints

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

SC² SS 2017 30 / 59

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

SC² SS 2017 30 / 59

2D Ex: $[36y^2 - 2x^3 - 9x^2 < 0 \land (x+2)y - 2 < 0]$ {p,q} \cup {ldcf_y(q), disc_y(p), res_y(p,q)}

C. W. Brown (USNA)

CAD — Collins' key ideas

Wanted: cells in which A_n are sign-invariant

Compute: $P_n(A_n) \in \mathbb{Z}[x_1, ..., x_{n-1}]$ s.t. if cell $S \in \mathbb{R}^{n-1}$ is sign-invariant for $P_n(A_n)$, then A_n are delineable over S

A D K A B K A B K A B K B B

CAD — Collins' key ideas

Wanted: cells in which A_n are sign-invariant

Compute: $P_n(A_n) \in \mathbb{Z}[x_1, ..., x_{n-1}]$ s.t. if cell $S \in \mathbb{R}^{n-1}$ is sign-invariant for $P_n(A_n)$, then A_n are delineable over S

SC² SS 2017

31/59

CAD — Collins' key ideas

Wanted: cells in which A_n are sign-invariant

Compute: $P_n(A_n) \in \mathbb{Z}[x_1, ..., x_{n-1}]$ s.t. if cell $S \in \mathbb{R}^{n-1}$ is sign-invariant for $P_n(A_n)$, then A_n are delineable over S

SC² SS 2017

31/59

Given: set *A* of irreducible polynomials in $\mathbb{Z}[x_1, \ldots, x_n]$

3

Given: set *A* of irreducible polynomials in $\mathbb{Z}[x_1, \ldots, x_n]$

() split *A* into $A_n = \{p \in A \mid \deg_{x_n} p = 1\}$ and $A_{< n}$ (the rest)

イロト イポト イヨト イヨト 二日

Given: set *A* of irreducible polynomials in $\mathbb{Z}[x_1, \ldots, x_n]$

- Split A into $A_n = \{p \in A \mid \deg_{x_n} p = 1\}$ and $A_{< n}$ (the rest)
- Compute P_n , the "projection of A_n " Note: for n = 2, P_n can be ldcf's, discrim's & resultants of A_n

・ 回 ト く ヨ ト く ヨ ト 二 ヨ

Given: set *A* of irreducible polynomials in $\mathbb{Z}[x_1, \ldots, x_n]$

- Split A into $A_n = \{p \in A \mid \deg_{x_n} p = 1\}$ and $A_{< n}$ (the rest)
- compute P_n, the "projection of A_n" Note: for n = 2, P_n can be ldcf's, discrim's & resultants of A_n
- Set $B = A_{< n} \cup \{$ irreducible factors of $P_n \}$

(日本)(日本)(日本)(日本)

Given: set *A* of irreducible polynomials in $\mathbb{Z}[x_1, \ldots, x_n]$

- Split A into $A_n = \{p \in A \mid \deg_{x_n} p = 1\}$ and $A_{< n}$ (the rest)
- Compute P_n , the "projection of A_n " Note: for n = 2, P_n can be ldcf's, discrim's & resultants of A_n
- set $B = A_{< n} \cup \{$ irreducible factors of $P_n \}$
- recursively compute CAD D_{n-1} of \mathbb{R}^{n-1} that is sign-invariant for B

(日本)(日本)(日本)(日本)

Given: set *A* of irreducible polynomials in $\mathbb{Z}[x_1, \ldots, x_n]$

- **o** split *A* into $A_n = \{p \in A \mid \deg_{x_n} p = 1\}$ and $A_{< n}$ (the rest)
- 2 compute P_n , the "projection of A_n " Note: for n = 2, P_n can be ldcf's, discrim's & resultants of A_n
- Set $B = A_{< n} \cup \{$ irreducible factors of $P_n \}$
- recursively compute CAD D_{n-1} of \mathbb{R}^{n-1} that is sign-invariant for B
- for each cell $c \in D_{n-1}$ (call its sample point α) create 1D CAD D_c that is sign-invariant for A_n evaluated at α

Given: set *A* of irreducible polynomials in $\mathbb{Z}[x_1, \ldots, x_n]$

- **o** split *A* into $A_n = \{p \in A \mid \deg_{x_n} p = 1\}$ and $A_{< n}$ (the rest)
- 2 compute P_n , the "projection of A_n " Note: for n = 2, P_n can be ldcf's, discrim's & resultants of A_n
- Set $B = A_{< n} \cup \{$ irreducible factors of $P_n \}$
- recursively compute CAD D_{n-1} of \mathbb{R}^{n-1} that is sign-invariant for B
- for each cell c ∈ D_{n-1} (call its sample point α)
 create 1D CAD D_c that is sign-invariant for A_n evaluated at α

Each cell *d* in D_c represents a cell in the CAD of \mathbb{R}^n !

The process just described was developed by George Collins in the early 1970s. It is built on ...

3

The process just described was developed by George Collins in the early 1970s. It is built on ...

• a projection operator that produces P_n , and

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The process just described was developed by George Collins in the early 1970s. It is built on ...

- a projection operator that produces *P_n*, and
- <u>univariate real root isolation</u> for polynomials with algebraic number coefficients.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The process just described was developed by George Collins in the early 1970s. It is built on ...

- a projection operator that produces *P_n*, and
- <u>univariate real root isolation</u> for polynomials with algebraic number coefficients.

Collins' Original Projection Operator:

$$\begin{aligned} &\operatorname{ProjC}(A,n) &:= \operatorname{ProjC}_{1}(A,n) \cup \operatorname{ProjC}_{2}(A,n), \text{ where} \\ &\operatorname{ProjC}_{1}(A,n) &:= \bigcup_{f \in A} \bigcup_{g \in \operatorname{RED}_{x_{n}}(f)} \left(\{\operatorname{Idcf}_{x_{n}}(g)\} \cup \operatorname{PSC}_{x_{n}}(g,g') \right) \\ &\operatorname{ProjC}_{2}(A,n) &:= \bigcup_{f_{1},f_{2} \in A} \bigcup_{\substack{g_{1} \in \operatorname{RED}_{x_{n}}(f_{1})\\g_{2} \in \operatorname{RED}_{x_{n}}(f_{2})}} \operatorname{PSC}_{x_{n}}(g_{1},g_{2}) \end{aligned}$$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $\exists z \left[x^2 + y^2 + z^2 - 1 < 0 \land 2(x+y)z - 1 > 0 \land y > 0 \right] \Big|$

SC² SS 2017 34 / 59

$$\left| \exists z \left[x^2 + y^2 + z^2 - 1 < 0 \land 2(x+y)z - 1 > 0 \land y > 0 \right] \right|$$

$$A = \{x^2 + y^2 + z^2 - 1, 2(x + y)z - 1, y\}$$

KC² SS 2017 34 / 59

$$\left| \exists z \left[x^2 + y^2 + z^2 - 1 < 0 \land 2(x+y)z - 1 > 0 \land y > 0 \right] \right|$$

$$A = \{x^2 + y^2 + z^2 - 1, 2(x + y)z - 1, y\}$$

$$A_3 = \{x^2 + y^2 + z^2 - 1, 2(x + y)z - 1\}$$

KC² SS 2017 34 / 59

$$\left| \exists z \left[x^2 + y^2 + z^2 - 1 < 0 \land 2(x+y)z - 1 > 0 \land y > 0 \right] \right|$$

$$A = \{x^2 + y^2 + z^2 - 1, 2(x + y)z - 1, y\}$$

$$A_3 = \{x^2 + y^2 + z^2 - 1, 2(x + y)z - 1\}$$

$$P(A_3) = \{y^2 + x^2 - 1, y + x,$$

$$4y^4 + 8xy^3 + 8x^2y^2 - 4y^2 + 8x^3y - 8xy + 4x^4 - 4x^2 + 1\}$$

KC² SS 2017 34 / 59

$$\left| \exists z \left[x^2 + y^2 + z^2 - 1 < 0 \land 2(x+y)z - 1 > 0 \land y > 0 \right] \right|$$

$$A = \{x^2 + y^2 + z^2 - 1, 2(x + y)z - 1, y\}$$

$$A_3 = \{x^2 + y^2 + z^2 - 1, 2(x + y)z - 1\}$$

$$P(A_3) = \{y^2 + x^2 - 1, y + x,$$

$$4y^4 + 8xy^3 + 8x^2y^2 - 4y^2 + 8x^3y - 8xy + 4x^4 - 4x^2 + 1\}$$

$$B = A_{<3} \cup P(A_3)$$

KC² SS 2017 34 / 59

$$\left| \exists z \left[x^2 + y^2 + z^2 - 1 < 0 \land 2(x+y)z - 1 > 0 \land y > 0 \right] \right|$$

$$A = \{x^2 + y^2 + z^2 - 1, 2(x + y)z - 1, y\}$$

$$A_3 = \{x^2 + y^2 + z^2 - 1, 2(x + y)z - 1\}$$

$$P(A_3) = \{y^2 + x^2 - 1, y + x, 4y^4 + 8xy^3 + 8x^2y^2 - 4y^2 + 8x^3y - 8xy + 4x^4 - 4x^2 + 1\}$$

$$B = A_{<3} \cup P(A_3)$$

$$B_2 = \{y, y^2 + x^2 - 1, y + x,
4y^4 + 8xy^3 + 8x^2y^2 - 4y^2 + 8x^3y - 8xy + 4x^4 - 4x^2 + 1\}$$

SC² SS 2017 34 / 59

-2

$$\left| \exists z \left[x^2 + y^2 + z^2 - 1 < 0 \land 2(x+y)z - 1 > 0 \land y > 0 \right] \right|$$

$$A = \{x^2 + y^2 + z^2 - 1, 2(x + y)z - 1, y\}$$

$$A_3 = \{x^2 + y^2 + z^2 - 1, 2(x + y)z - 1\}$$

$$P(A_3) = \{y^2 + x^2 - 1, y + x,$$

$$4y^4 + 8xy^3 + 8x^2y^2 - 4y^2 + 8x^3y - 8xy + 4x^4 - 4x^2 + 1\}$$

ł

SC² SS 2017 34 / 59

2

$$\left| \exists z \left[x^2 + y^2 + z^2 - 1 < 0 \land 2(x+y)z - 1 > 0 \land y > 0 \right] \right|$$

$$A = \{x^2 + y^2 + z^2 - 1, 2(x + y)z - 1, y\}$$

$$A_3 = \{x^2 + y^2 + z^2 - 1, 2(x + y)z - 1\}$$

$$P(A_3) = \{y^2 + x^2 - 1, y + x,$$

$$4y^4 + 8xy^3 + 8x^2y^2 - 4y^2 + 8x^3y - 8xy + 4x^4 - 4x^2 + 1\}$$

$$B = A_{<3} \cup P(A_3)$$

$$B_2 = \{y, y^2 + x^2 - 1, y + x,
4y^4 + 8xy^3 + 8x^2y^2 - 4y^2 + 8x^3y - 8xy + 4x^4 - 4x^2 + 1\}$$

$$P(B_2) = \{x + 1, x - 1, x, 32x^6 - 80x^4 + 85x^2 - 32, 2x^2 - 1\}$$

 $A \cup B \cup P(B_2)$ is called the "projection factor set"

э

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

SC² SS 2017 35 / 59

э

・ロト ・ 日 ト ・ 日 ト ・ 日

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

SC² SS 2017 35 / 59

CAD and Real Polynomial Constraints

≣ ▶ < ≣ ▶ ≣ ∽ ९ ० SC² SS 2017 35 / 59

 ≥ ► < Ξ ► Ξ</td>
 < ⊃ < ○</td>

 SC² SS 2017
 35 / 59

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

 Image: No. 1
 Image: No. 1

CAD and Real Polynomial Constraints

≣ ▶ < ≣ ▶ ≣ ∽ ९ ० SC² SS 2017 35 / 59

35 / 59

э

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

 Image: No. 1
 Image: No. 1

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

 Image: No. 1
 Image: No. 1

35 / 59

э

35 / 59

э

35 / 59

э

35 / 59

э

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

 Image: No. 0
 Image: No. 0

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

 Image: No. 0
 Image: No. 0

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

SC² SS 2017 35 / 59

What have we learned?

What haven't we learned (that we won't today)

What's next?

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

 $\mathbb{E} \to \mathbb{E} \to \mathbb{E}$ $\mathfrak{I} \to \mathfrak{I}$ SC² SS 2017 36 / 59

What have we learned?

• CAD as an explicit representation of semi-algebraic sets

What haven't we learned (that we won't today)

What's next?

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

 $\mathbb{E} \times \mathbb{E} \times \mathbb{E} \to \mathbb{E}$ $\mathfrak{I} \to \mathfrak{I} \times \mathfrak{I}$ SC² SS 2017 36/59

What have we learned?

- CAD as an explicit representation of semi-algebraic sets
- Cylindrical cells, indexed root expressions, delineability

What haven't we learned (that we won't today)

What's next?

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

 $SC^2 SS 2017$ 36/59

・ 同 ト ・ ヨ ト ・ ヨ ト

What have we learned?

- CAD as an explicit representation of semi-algebraic sets
- Cylindrical cells, indexed root expressions, delineability
- Univariate real root isolation: the engine that makes CAD go

What haven't we learned (that we won't today)

What's next?

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

不同 トイモトイモ

SC² SS 2017

36/59

What have we learned?

- CAD as an explicit representation of semi-algebraic sets
- Cylindrical cells, indexed root expressions, delineability
- Univariate real root isolation: the engine that makes CAD go
- Cylindrical arrangement, Cylindrical formulas, CAD + truth-values

What haven't we learned (that we won't today)

What's next?

不得る 不良る 不良る

What have we learned?

- CAD as an explicit representation of semi-algebraic sets
- Cylindrical cells, indexed root expressions, delineability
- Univariate real root isolation: the engine that makes CAD go
- Cylindrical arrangement, Cylindrical formulas, CAD + truth-values
- Truth-invariant vs. sign-invariant CAD & Collins' original algorithm (the role of the "projection operator")

What haven't we learned (that we won't today)

What's next?

4 **A** N A **B** N A **B** N

What have we learned?

- CAD as an explicit representation of semi-algebraic sets
- Cylindrical cells, indexed root expressions, delineability
- Univariate real root isolation: the engine that makes CAD go
- Cylindrical arrangement, Cylindrical formulas, CAD + truth-values
- Truth-invariant vs. sign-invariant CAD & Collins' original algorithm (the role of the "projection operator")
- The ease of projection in the CAD representation

What haven't we learned (that we won't today)

What's next?

4 **A** N A **B** N A **B** N

What have we learned?

- CAD as an explicit representation of semi-algebraic sets
- Cylindrical cells, indexed root expressions, delineability
- Univariate real root isolation: the engine that makes CAD go
- Cylindrical arrangement, Cylindrical formulas, CAD + truth-values
- Truth-invariant vs. sign-invariant CAD & Collins' original algorithm (the role of the "projection operator")
- The ease of projection in the CAD representation

What haven't we learned (that we won't today)

• How to actually do univariate polynomial real root isolation

What's next?

・ 同 ト ・ ヨ ト ・ ヨ ト

What have we learned?

- CAD as an explicit representation of semi-algebraic sets
- Cylindrical cells, indexed root expressions, delineability
- Univariate real root isolation: the engine that makes CAD go
- Cylindrical arrangement, Cylindrical formulas, CAD + truth-values
- Truth-invariant vs. sign-invariant CAD & Collins' original algorithm (the role of the "projection operator")
- The ease of projection in the CAD representation

What haven't we learned (that we won't today)

- How to actually do univariate polynomial real root isolation
- How to compute discriminants, resultants, PSC's and other polynomial operations used by projection operators

What's next?

э.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Part II: Problem formulation

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

SC² SS 2017 37 / 59

Suppose we had the following quantifier-elimination problem:

$$\forall x, y \left[y^2 + x^2 < a \Rightarrow ax + by < 1 \right]$$

Suppose we had the following quantifier-elimination problem:

$$\forall x, y \left[y^2 + x^2 < a \Rightarrow ax + by < 1 \right]$$

$$\neg \exists x, y \neg \left[y^2 + x^2 < a \Rightarrow ax + by < 1 \right]$$

Suppose we had the following quantifier-elimination problem:

$$\forall x, y \left[y^2 + x^2 < a \Rightarrow ax + by < 1 \right]$$

$$\neg \exists x, y \neg \left[y^2 + x^2 < a \Rightarrow ax + by < 1 \right]$$

$$\neg \exists x, y \left[y^2 + x^2 < a \land ax + by \ge 1 \right]$$

SC² SS 2017

38 / 59

Suppose we had the following quantifier-elimination problem:

$$\forall x, y \left[y^2 + x^2 < a \Rightarrow ax + by < 1 \right]$$

$$\neg \exists x, y \neg \left[y^2 + x^2 < a \Rightarrow ax + by < 1 \right]$$

$$\neg \exists x, y \left[y^2 + x^2 < a \land ax + by \ge 1
ight]$$

To construct a CAD of \mathbb{R}^2 for $\forall x, y [y^2 + x^2 < a \Rightarrow ax + by < 1] ...$

< 回 > < 三 > < 三 >

Suppose we had the following quantifier-elimination problem:

$$\forall x, y \left[y^2 + x^2 < a \Rightarrow ax + by < 1 \right]$$

$$\neg \exists x, y \neg \left[y^2 + x^2 < a \Rightarrow ax + by < 1 \right]$$

$$eg \exists x, y \left[y^2 + x^2 < a \land ax + by \ge 1
ight]$$

To construct a CAD of \mathbb{R}^2 for $\forall x, y [y^2 + x^2 < a \Rightarrow ax + by < 1] ...$ 1. construct CAD for $y^2 + x^2 < a \land ax + by \ge 1$

Suppose we had the following quantifier-elimination problem:

$$\forall x, y \left[y^2 + x^2 < a \Rightarrow ax + by < 1 \right]$$

$$\neg \exists x, y \neg \left[y^2 + x^2 < a \Rightarrow ax + by < 1 \right]$$

$$eg \exists x, y \left[y^2 + x^2 < a \land ax + by \ge 1
ight]$$

To construct a CAD of \mathbb{R}^2 for $\forall x, y [y^2 + x^2 < a \Rightarrow ax + by < 1] ...$

- 1. construct CAD for $y^2 + x^2 < a \land ax + by \ge 1$
- 2. project to eliminate x and y

Suppose we had the following quantifier-elimination problem:

$$\forall x, y \left[y^2 + x^2 < a \Rightarrow ax + by < 1 \right]$$

$$\neg \exists x, y \neg \left[y^2 + x^2 < a \Rightarrow ax + by < 1 \right]$$

$$\neg \exists x, y \left[y^2 + x^2 < a \land ax + by \ge 1 \right]$$

To construct a CAD of \mathbb{R}^2 for $\forall x, y [y^2 + x^2 < a \Rightarrow ax + by < 1] ...$

- 1. construct CAD for $y^2 + x^2 < a \wedge ax + by \ge 1$
- 2. project to eliminate x and y
- 3. negate by swapping truth values

Suppose we had the following quantifier-elimination problem:

$$\forall x, y \left[y^2 + x^2 < a \Rightarrow ax + by < 1 \right]$$

$$\neg \exists x, y \neg \left[y^2 + x^2 < a \Rightarrow ax + by < 1 \right]$$

$$\neg \exists x, y \left[y^2 + x^2 < a \land ax + by \ge 1 \right]$$

To construct a CAD of \mathbb{R}^2 for $\forall x, y [y^2 + x^2 < a \Rightarrow ax + by < 1] ...$

- 1. construct CAD for $y^2 + x^2 < a \wedge ax + by \ge 1$
- 2. project to eliminate x and y
- 3. negate by swapping truth values

Only works for orders! (a, b, x, y), (b, a, x, y), (a, b, y, x), (b, a, y, x)

Prenex form — basic Collins-style CAD requires

 $(Q_1 x_{i_1}, \ldots x_{i_2-1}) (Q_2 x_{i_2}, \ldots x_{i_3-1}) \cdots (Q_r x_{i_r}, \ldots x_n) [F(x_1, \ldots, x_n)]$

where $Q_j \in \{\exists, \forall\}, Q_i \neq Q_{i+1} \text{ and } F \text{ is quantifier-free}$

(日本)(日本)(日本)(日本)

Prenex form — basic Collins-style CAD requires

$$(Q_1 x_{i_1}, \dots, x_{i_2-1}) (Q_2 x_{i_2}, \dots, x_{i_3-1}) \cdots (Q_r x_{i_r}, \dots, x_n) [F(x_1, \dots, x_n)]$$

where $Q_j \in \{\exists, \forall\}, Q_i \neq Q_{i+1} \text{ and } F \text{ is quantifier-free}$

• Any formula can be put in prenex form

$$\exists z[z > 0 \land \forall y[(2-x)z^2 + y^2 > 0] \land \exists y[xy = 1]]$$

Prenex form — basic Collins-style CAD requires

$$(Q_1 x_{i_1}, \dots, x_{i_2-1}) (Q_2 x_{i_2}, \dots, x_{i_3-1}) \cdots (Q_r x_{i_r}, \dots, x_n) [F(x_1, \dots, x_n)]$$

where $Q_j \in \{\exists, \forall\}, Q_i \neq Q_{i+1} \text{ and } F \text{ is quantifier-free}$

• Any formula can be put in prenex form

$$\exists z[z > 0 \land \forall y[(2-x)z^2 + y^2 > 0] \land \exists y[xy = 1]]$$

$$\exists z[z > 0 \land \forall y_1[(2-x)z^2 + y_1^2 > 0] \land \exists y_2[xy_2 = 1]]$$

不同 いんきいんき

Prenex form — basic Collins-style CAD requires

$$(Q_1 x_{i_1}, \ldots x_{i_2-1}) (Q_2 x_{i_2}, \ldots x_{i_3-1}) \cdots (Q_r x_{i_r}, \ldots x_n) [F(x_1, \ldots, x_n)]$$

where $Q_j \in \{\exists, \forall\}, Q_i \neq Q_{i+1} \text{ and } F$ is quantifier-free

• Any formula can be put in prenex form

$$\exists z[z > 0 \land \forall y[(2-x)z^2 + y^2 > 0] \land \exists y[xy = 1]]$$

$$\exists z[z > 0 \land \forall y_1[(2-x)z^2 + y_1^2 > 0] \land \exists y_2[xy_2 = 1]]$$

$$\exists z \exists y_2 \forall y_1 [z > 0 \land [(2 - x)z^2 + y_1^2 > 0] \land [xy_2 = 1]]$$

< ロ > < 同 > < 回 > < 回 >

Prenex form — basic Collins-style CAD requires

$$(Q_1 x_{i_1}, \dots, x_{i_2-1}) (Q_2 x_{i_2}, \dots, x_{i_3-1}) \cdots (Q_r x_{i_r}, \dots, x_n) [F(x_1, \dots, x_n)]$$

where $Q_j \in \{\exists, \forall\}, Q_i \neq Q_{i+1} \text{ and } F$ is quantifier-free

Any formula can be put in prenex form

$$\exists z[z > 0 \land \forall y[(2-x)z^2 + y^2 > 0] \land \exists y[xy = 1]]$$

$$\exists z[z > 0 \land \forall y_1[(2-x)z^2 + y_1^2 > 0] \land \exists y_2[xy_2 = 1]]$$

$$\exists z \exists y_2 \forall y_1 [z > 0 \land [(2 - x)z^2 + y_1^2 > 0] \land [xy_2 = 1]]$$

• Variables can only be reordered within their block

4 **A** N A **B** N A **B** N

Prenex form — basic Collins-style CAD requires

$$(Q_1 x_{i_1}, \dots, x_{i_2-1}) (Q_2 x_{i_2}, \dots, x_{i_3-1}) \cdots (Q_r x_{i_r}, \dots, x_n) [F(x_1, \dots, x_n)]$$

where $Q_j \in \{\exists, \forall\}, Q_i \neq Q_{i+1} \text{ and } F$ is quantifier-free

Any formula can be put in prenex form

$$\exists z[z > 0 \land \forall y[(2-x)z^2 + y^2 > 0] \land \exists y[xy = 1]]$$

$$\exists z[z > 0 \land \forall y_1[(2-x)z^2 + y_1^2 > 0] \land \exists y_2[xy_2 = 1]]$$

$$\exists z \exists y_2 \forall y_1 [z > 0 \land [(2 - x)z^2 + y_1^2 > 0] \land [xy_2 = 1]]$$

- Variables can only be reordered within their block
- Given prenex formula with *r* quantifier blocks, we have a strict partial order that constrains CAD variable order:

x < y if x free and y bound, or block(x) before block(y)

C. W. Brown (USNA)

Example b3: Order matters

Consider a CAD for the formula below using the Collins projection:

 $zw^{2} + wx + w - 2y + z + 4x - 1 < 0 \land 2yw^{2} - 3wz - 4w - 2z + 4x - 3y + y < 0 \land x > 0 \land y > 0 \land z > 0$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example b3: Order matters

Consider a CAD for the formula below using the Collins projection:

 $zw^{2} + wx + w - 2y + z + 4x - 1 < 0 \land 2yw^{2} - 3wz - 4w - 2z + 4x - 3y + y < 0 \land x > 0 \land y > 0 \land z > 0$

If we use the order x, y, z, w, we get 3240 projection factors!

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

 $SC^2 SS 2017$ 40/59

(人間) トイヨト イヨト

Consider a CAD for the formula below using the Collins projection:

 $zw^{2} + wx + w - 2y + z + 4x - 1 < 0 \land 2yw^{2} - 3wz - 4w - 2z + 4x - 3y + y < 0 \land x > 0 \land y > 0 \land z > 0$

If we use the order x, y, z, w, we get 3240 projection factors! If we use the order w, z, y, x, we get 24 projection factors!

4 **A** N A **B** N A **B** N

Choosing a variable ordering

The choice of variable ordering is hugely important!

- In general, one can only reorder variables within the same block
- Several ways to choose ordering (see [Dolzman, Seidl, Sturm 2004], [Huang, Davenport, England ... 2014], ...)
- Simple hueristic
 - 1. Descending order by degree of variable, breaking ties with
 - 2. Descending order by highest total-degree term in which the variable appears, breaking ties with
 - 3. Descending order by number of terms containing the variable

Simplifications that should be done prior to CAD

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

SC² SS 2017 42 / 59

э

イロト イポト イヨト イヨト

Simplifications that should be done prior to CAD

• Often formulas include constraints like:

$$x = 0, y = x, 3x - 2y = 1, ax + b = 0$$

E.g. happens when automatically specializing a general formula.

CAD and Real Polynomial Constraints

A (10) × A (10) × A (10)

Simplifications that should be done prior to CAD

• Often formulas include constraints like:

$$x = 0, y = x, 3x - 2y = 1, ax + b = 0$$

E.g. happens when automatically specializing a general formula.

These are better dealt with prior to using CAD
• Often formulas include constraints like:

$$x = 0, y = x, 3x - 2y = 1, ax + b = 0$$

E.g. happens when automatically specializing a general formula.

- These are better dealt with prior to using CAD
- Example 4b $(\forall x)(\exists y, z)[z + (x^3 5x + 2)y \ge 0 \land z = 0 \land y = 0]$

• Often formulas include constraints like:

$$x = 0, y = x, 3x - 2y = 1, ax + b = 0$$

E.g. happens when automatically specializing a general formula.

- These are better dealt with prior to using CAD
- Example 4b $(\forall x)(\exists y, z)[z + (x^3 5x + 2)y \ge 0 \land z = 0 \land y = 0]$
 - extract $A = \{z + (x^3 5x + 2)y, z, y\}$

周 ト イ ヨ ト イ ヨ ト

• Often formulas include constraints like:

$$x = 0, y = x, 3x - 2y = 1, ax + b = 0$$

E.g. happens when automatically specializing a general formula.

- These are better dealt with prior to using CAD
- Example 4b $(\forall x)(\exists y, z)[z + (x^3 5x + 2)y \ge 0 \land z = 0 \land y = 0]$
 - extract $A = \{z + (x^3 5x + 2)y, z, y\}$
 - ▶ fix order *x* < *y* < *z*

4 **A** N A **B** N A **B** N

• Often formulas include constraints like:

$$x = 0, y = x, 3x - 2y = 1, ax + b = 0$$

E.g. happens when automatically specializing a general formula.

- These are better dealt with prior to using CAD
- Example 4b $(\forall x)(\exists y, z)[z + (x^3 5x + 2)y \ge 0 \land z = 0 \land y = 0]$
 - extract $A = \{z + (x^3 5x + 2)y, z, y\}$
 - fix order x < y < z</p>
 - project $Proj(A, z) = \{\dots, x^3 5x + 2, \dots, y, \dots\}$

くゆ くうとく ひとう う

• Often formulas include constraints like:

$$x = 0, y = x, 3x - 2y = 1, ax + b = 0$$

E.g. happens when automatically specializing a general formula.

- These are better dealt with prior to using CAD
- Example 4b $(\forall x)(\exists y, z)[z + (x^3 5x + 2)y \ge 0 \land z = 0 \land y = 0]$
 - extract $A = \{z + (x^3 5x + 2)y, z, y\}$
 - ▶ fix order *x* < *y* < *z*

• project
$$Proj(A, z) = \{\dots, x^3 - 5x + 2, \dots, y, \dots\}$$

...

4 **A** N A **B** N A **B** N

• Often formulas include constraints like:

$$x = 0, y = x, 3x - 2y = 1, ax + b = 0$$

E.g. happens when automatically specializing a general formula.

- These are better dealt with prior to using CAD
- Example 4b $(\forall x)(\exists y, z)[z + (x^3 5x + 2)y \ge 0 \land z = 0 \land y = 0]$
 - extract $A = \{z + (x^3 5x + 2)y, z, y\}$
 - fix order x < y < z</p>
 - project $Proj(A, z) = \{..., x^3 5x + 2, ..., y, ...\}$

▶ ...

No matter what, $x^3 - 5x + 2$ is in the projection factor set!

・ 何 ト く ヨ ト く ヨ ト 二 ヨ

• Often formulas include constraints like:

$$x = 0, y = x, 3x - 2y = 1, ax + b = 0$$

E.g. happens when automatically specializing a general formula.

- These are better dealt with prior to using CAD
- Example 4b $(\forall x)(\exists y, z)[z + (x^3 5x + 2)y \ge 0 \land z = 0 \land y = 0]$
 - extract $A = \{z + (x^3 5x + 2)y, z, y\}$
 - ▶ fix order *x* < *y* < *z*
 - project $Proj(A, z) = \{\dots, x^3 5x + 2, \dots, y, \dots\}$
 - Þ ...

No matter what, $x^3 - 5x + 2$ is in the projection factor set!

Punchline: Do linear substituions before CAD construction!

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

• Depending on the quantifier, we may split formulas up

э

- Depending on the quantifier, we may split formulas up
 - $(\exists y)[F(x,y) \lor G(x,y)] \Leftrightarrow (\exists y)[F(x,y)] \lor (\exists y)[F(x,y)]$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Depending on the quantifier, we may split formulas up
 - ► $(\exists y)[F(x,y) \lor G(x,y)] \Leftrightarrow (\exists y)[F(x,y)] \lor (\exists y)[F(x,y)]$
 - $\blacktriangleright \ (\forall y)[F(x,y) \land G(x,y)] \Leftrightarrow (\forall y)[F(x,y)] \land (\forall y)[F(x,y)]$

- Depending on the quantifier, we may split formulas up
 - ► $(\exists y)[F(x,y) \lor G(x,y)] \Leftrightarrow (\exists y)[F(x,y)] \lor (\exists y)[F(x,y)]$
 - $\blacktriangleright \ (\forall y)[F(x,y) \land G(x,y)] \Leftrightarrow (\forall y)[F(x,y)] \land (\forall y)[F(x,y)]$

• Example b5: with absolute value, we might do this systematically

$$(\exists \alpha)[|x-\alpha| < 1 \land \underbrace{-17\alpha t - 44\alpha x + 71tx - 82\alpha + 80t + 62x < 0}_{C}]$$

- Depending on the quantifier, we may split formulas up
 - $(\exists y)[F(x,y) \lor G(x,y)] \Leftrightarrow (\exists y)[F(x,y)] \lor (\exists y)[F(x,y)]$
 - $\bullet \ (\forall y)[F(x,y) \land G(x,y)] \Leftrightarrow (\forall y)[F(x,y)] \land (\forall y)[F(x,y)]$

• Example b5: with absolute value, we might do this systematically

$$(\exists \alpha)[|x - \alpha| < 1 \land \underbrace{-17\alpha t - 44\alpha x + 71tx - 82\alpha + 80t + 62x < 0}_{C}]$$

$$|\mathbf{x} - \alpha| < \mathbf{1} \Leftrightarrow \left(\begin{array}{c} \mathbf{x} < \alpha \land \alpha - \mathbf{x} < \mathbf{1} \lor \\ \mathbf{x} = \alpha \land \mathbf{0} < \mathbf{1} \end{array} \right)$$

SC² SS 2017

43/59

- Depending on the quantifier, we may split formulas up
 - ► $(\exists y)[F(x,y) \lor G(x,y)] \Leftrightarrow (\exists y)[F(x,y)] \lor (\exists y)[F(x,y)]$
 - ► $(\forall y)[F(x,y) \land G(x,y)] \Leftrightarrow (\forall y)[F(x,y)] \land (\forall y)[F(x,y)]$

• Example b5: with absolute value, we might do this systematically

$$(\exists \alpha) [|x - \alpha| < 1 \land \underbrace{-17\alpha t - 44\alpha x + 71tx - 82\alpha + 80t + 62x < 0}_{C}]$$

$$|\mathbf{x} - \alpha| < \mathbf{1} \Leftrightarrow \left(\begin{array}{c} \mathbf{x} > \alpha \land \mathbf{x} - \alpha < \mathbf{1} \lor \\ \mathbf{x} < \alpha \land \alpha - \mathbf{x} < \mathbf{1} \lor \\ \mathbf{x} = \alpha \land \mathbf{0} < \mathbf{1} \end{array}\right)$$

$$(\exists \alpha) \begin{bmatrix} x > \alpha \land x - \alpha < 1 \land C \lor \\ x < \alpha \land \alpha - x < 1 \land C \lor \\ x = \alpha \land 0 < 1 \land C \end{bmatrix}$$

- Depending on the quantifier, we may split formulas up
 - $(\exists y)[F(x,y) \lor G(x,y)] \Leftrightarrow (\exists y)[F(x,y)] \lor (\exists y)[F(x,y)]$
 - $\bullet \ (\forall y)[F(x,y) \land G(x,y)] \Leftrightarrow (\forall y)[F(x,y)] \land (\forall y)[F(x,y)]$

• Example b5: with absolute value, we might do this systematically

$$(\exists \alpha) [|x - \alpha| < 1 \land \underbrace{-17\alpha t - 44\alpha x + 71tx - 82\alpha + 80t + 62x < 0}_{C}]$$

$$|\mathbf{x} - \alpha| < \mathbf{1} \Leftrightarrow \left(\begin{array}{c} \mathbf{x} > \alpha \land \mathbf{x} - \alpha < \mathbf{1} \lor \\ \mathbf{x} < \alpha \land \alpha - \mathbf{x} < \mathbf{1} \lor \\ \mathbf{x} = \alpha \land \mathbf{0} < \mathbf{1} \end{array}\right)$$

$$(\exists \alpha) \left[\begin{array}{c} x > \alpha \land x - \alpha < 1 \land C \lor \\ x < \alpha \land \alpha - x < 1 \land C \lor \\ x = \alpha \land 0 < 1 \land C \end{array} \right] \longleftarrow \text{solve each separately!}$$

Finishing off the previous example ...

$$\underbrace{(\exists \alpha)[x > \alpha \land x - \alpha < 1 \land C]}_{(\exists \alpha)[x < \alpha \land \alpha - x < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}$$

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

Finishing off the previous example ...

$$\underbrace{(\exists \alpha)[x > \alpha \land x - \alpha < 1 \land C]}_{(\exists \alpha)[x < \alpha \land \alpha - x < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}$$

э

Finishing off the previous example ...

$$\underbrace{(\exists \alpha)[x > \alpha \land x - \alpha < 1 \land C]}_{(\exists \alpha)[x < \alpha \land \alpha - x < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\forall x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\forall x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\forall x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\forall x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\forall x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\forall x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\forall x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\forall x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\forall x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\forall x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\forall x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\forall x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\forall x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\forall x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\forall x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\forall x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\forall x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\forall x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\forall x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\forall x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\forall x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\forall x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\forall x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\forall x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 \land C]}_{(\forall x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 \land C]}_{(\forall x = \alpha \land 0 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 \land C]}_{(\forall x = \alpha \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 \land C]}_{(\forall \alpha)[x = \alpha \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land C]}_{(\forall \alpha)[x = \alpha \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land C]}_{(\forall \alpha)[x = \alpha \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land C]}_{(\forall \alpha)[x = \alpha \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land C]}_{(\forall \alpha)[x = \alpha \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land C]}_{(\forall \alpha)[x = \alpha \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land C]}_{(\forall \alpha)[x = \alpha \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land C]} \lor \underbrace{(i \alpha \land C]} \lor \underbrace{$$

SC² SS 2017 44 / 59

э

Finishing off the previous example ...

$$\underbrace{(\exists \alpha)[x > \alpha \land x - \alpha < 1 \land C]}_{(\exists \alpha)[x < \alpha \land \alpha - x < 1 \land C]} \lor \underbrace{(\exists \alpha)[x < \alpha \land \alpha - x < 1 \land C]}_{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(a \cap \alpha)[x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(a \cap \alpha)[x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(a \cap \alpha)[x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(a \cap \alpha)[x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(a \cap \alpha)[x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(a \cap \alpha)[x = \alpha \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(a \cap \alpha)[x = \alpha \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land C]}_{(a \cap \alpha)[x = \alpha \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land C]}_{(a \cap \alpha)[x = \alpha \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land C]}_{(a \cap \alpha)[x = \alpha \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land C]}_{(a \land \alpha)[x = \alpha \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land C]}_{(a \land \alpha)[x = \alpha \land C]} \lor \underbrace{(a \land \alpha)[x = \alpha \land C]} \lor \underbrace{(a \land \alpha)[x = \alpha \land C]} \lor (a \land C$$

SC² SS 2017 44 / 59

э

Finishing off the previous example ...

However ... it can be that substantial extra work is needed to construct a Tarski formula from the CAD representation, making this approach seem less attractive when there is another quantifier block.

Finishing off the previous example ...

However ... it can be that substantial extra work is needed to construct a Tarski formula from the CAD representation, making this approach seem less attractive when there is another quantifier block.

However (again) ... without substantial extra work, we can construct a formula with indexed-root expressions and (though we won't cover it here) CAD's can be constructed directly from such formulas.

- ロ ト - (同 ト - (回 ト -) 回 ト -) 回

Finishing off the previous example ...

However ... it can be that substantial extra work is needed to construct a Tarski formula from the CAD representation, making this approach seem less attractive when there is another quantifier block.

However (again) ... without substantial extra work, we can construct a formula with indexed-root expressions and (though we won't cover it here) CAD's can be constructed directly from such formulas.

Example b6: $(\exists y)[x^2 + y^2 < 1 \land x + y > 0]$

Finishing off the previous example ...

$$\underbrace{(\exists \alpha)[x > \alpha \land x - \alpha < 1 \land C]}_{(\exists \alpha)[x < \alpha \land \alpha - x < 1 \land C]} \lor \underbrace{(\exists \alpha)[x < \alpha \land \alpha - x < 1 \land C]}_{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(a \land \alpha)[x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(a \land \alpha)[x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(a \land \alpha)[x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(a \land \alpha)[x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(a \land \alpha)[x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(a \land \alpha)[x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(a \land \alpha)[x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(a \land \alpha)[x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 \land C]}_{(a \land \alpha)[x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 < 1 \land C]}_{(a \land \alpha)[x = \alpha \land 0 < 1 \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land 0 \land C]}_{(a \land \alpha)[x = \alpha \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land C]}_{(a \land \alpha)[x = \alpha \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land C]}_{(a \land \alpha)[x = \alpha \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land C]}_{(a \land \alpha)[x = \alpha \land C]} \lor \underbrace{(\exists \alpha)[x = \alpha \land C]}_{(a \land \alpha)[x = \alpha \land C]} \lor \underbrace{(a \land \alpha \land C]} \lor \underbrace{(a \land \alpha \land C]} \lor (a \land C]} \lor \underbrace{(a \land \alpha \land C]} \lor (a \land C]} \lor$$

However ... it can be that substantial extra work is needed to construct a Tarski formula from the CAD representation, making this approach seem less attractive when there is another quantifier block.

However (again) ... without substantial extra work, we can construct a formula with indexed-root expressions and (though we won't cover it here) CAD's can be constructed directly from such formulas.

Example b6: $(\exists y)[x^2 + y^2 < 1 \land x + y > 0] \rightarrow x < 1 \land x > root_1 2x^2 - 1$

End of Part II

What have we learned?

- The importance of variable ordering
- Carrying out simplification (e.g. linear substitutions) prior to CAD construction
- The value of splitting up inputs and the distinction betweeen Tarski formulas for results vs. formulas with indexed root expressions.

4 3 5 4 3 5

Complexity

Constructing a CAD via Collins' original algorithm takes time

- where r = # of variables,
- $n = \max$ degree of input in any variable,
- m = # of input polynomials,
- $d = \max$ bitlength of coefficients.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Complexity

Constructing a CAD via Collins' original algorithm takes time

$$O\left((2n)^{2^{2r+8}}m^{2^{r+6}}d^3\right)$$

where r = # of variables,

- $n = \max$ degree of input in any variable,
- m = # of input polynomials,
- $d = \max$ bitlength of coefficients.

・ 同 ト ・ ヨ ト ・ ヨ ト

Complexity

Constructing a CAD via Collins' original algorithm takes time

$$O\left((2n)^{2^{2r+8}}m^{2^{r+6}}d^3\right)$$

where r = # of variables,

- $n = \max$ degree of input in any variable,
- m = # of input polynomials,
- $d = \max$ bitlength of coefficients.

This is really unfortunate complexity.

・ 同 ト ・ ヨ ト ・ ヨ ト

How can we improve upon the original Collins CAD?

A D > A B > A B > A B >

How can we improve upon the original Collins CAD?

1. make univariate real root isolation faster Roullier-Zimmerman 2004, Sagraloff-Melhorn 2016,...

How can we improve upon the original Collins CAD?

- 1. make univariate real root isolation faster Roullier-Zimmerman 2004, Sagraloff-Melhorn 2016,...
- 2. make the projection sets smaller Hong, McCallum, Lazard, ...

• (10) • (10)

How can we improve upon the original Collins CAD?

- 1. make univariate real root isolation faster Roullier-Zimmerman 2004, Sagraloff-Melhorn 2016,...
- 2. make the projection sets smaller Hong, McCallum, Lazard, ...
- 3. sign-invaraint CAD is blind to the input formula ... tie the input formula, projection and lifting together

・ 同 ト ・ ヨ ト ・ ヨ ト

How can we improve upon the original Collins CAD?

- 1. make univariate real root isolation faster Roullier-Zimmerman 2004, Sagraloff-Melhorn 2016,...
- 2. make the projection sets smaller Hong, McCallum, Lazard, ...
- 3. sign-invaraint CAD is blind to the input formula ... tie the input formula, projection and lifting together
 - Partial CAD (Hong & Collins)

A (10) A (10)

How can we improve upon the original Collins CAD?

- 1. make univariate real root isolation faster Roullier-Zimmerman 2004, Sagraloff-Melhorn 2016,...
- 2. make the projection sets smaller Hong, McCallum, Lazard, ...
- 3. sign-invaraint CAD is blind to the input formula ... tie the input formula, projection and lifting together
 - Partial CAD (Hong & Collins)
 - Equational constraints (McCallum & Collins)

How can we improve upon the original Collins CAD?

- 1. make univariate real root isolation faster Roullier-Zimmerman 2004, Sagraloff-Melhorn 2016,...
- 2. make the projection sets smaller Hong, McCallum, Lazard, ...
- 3. sign-invaraint CAD is blind to the input formula ... tie the input formula, projection and lifting together
 - Partial CAD (Hong & Collins)
 - Equational constraints (McCallum & Collins)
 - Truth table invariant CAD (Davenport & England & others ...)

How can we improve upon the original Collins CAD?

- 1. make univariate real root isolation faster Roullier-Zimmerman 2004, Sagraloff-Melhorn 2016,...
- 2. make the projection sets smaller Hong, McCallum, Lazard, ...
- 3. sign-invaraint CAD is blind to the input formula ... tie the input formula, projection and lifting together
 - Partial CAD (Hong & Collins)
 - Equational constraints (McCallum & Collins)
 - Truth table invariant CAD (Davenport & England & others ...)
 - Divide & Conquer / incremental CAD (Strzebonski, Kremer, ...)

Part III: SMT meets computer algebra in NLSAT

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

SC² SS 2017 48 / 59

(4) (2) (4) (2)

Big picture to keep in mind

SAT/SMT Strategy

- 1. incrementally build model
- 2. learn by generalizing conflicts

Collins Strategy

- 1. univariate real root isolation
- 2. projection (eliminate variables)

< 6 b
Big picture to keep in mind

SAT/SMT Strategy

- 1. incrementally build model
- 2. learn by generalizing conflicts

Collins Strategy

- 1. univariate real root isolation
- 2. projection (eliminate variables)

The NLSAT algorithm of Jovanović and de Moura (2012) is a beautiful synthesis of the two!

不同 トイモトイモ

S||

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

S||

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

 $S \parallel C11$

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

S|| *C*11

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

 $\overbrace{(x > 1 \lor x < -1)}^{C11} \land \overbrace{x^2 < 3}^{C12} \land \overbrace{(y^2 - 2xy + x > 0 \lor y < -2)}^{C21} \land \overbrace{x^3 + y^2 < 2xy}^{C22}$

 $S \parallel C11 C12$

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

 $\overbrace{(x > 1 \lor x < -1)}^{C11} \land \overbrace{x^2 < 3}^{C12} \land \overbrace{(y^2 - 2xy + x > 0 \lor y < -2)}^{C21} \land \overbrace{x^3 + y^2 < 2xy}^{C22}$

S|| C11 C12

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

 $\overbrace{(x > 1 \lor x < -1)}^{C11} \land \overbrace{x^2 < 3}^{C12} \land \overbrace{(y^2 - 2xy + x > 0 \lor y < -2)}^{C21} \land \overbrace{x^3 + y^2 < 2xy}^{C22}$

 $S \parallel C11 C12$

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

 $S \parallel C11 \ C12 \ (x \leftarrow -\frac{3}{2})$

C. W. Brown (USNA)

50 / 59

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

S|| C11 C12 $(x \leftarrow -\frac{3}{2})$ C21

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

S|| C11 C12 $(x \leftarrow -\frac{3}{2})$ C21

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

 $S \parallel C$ 11 C12 $\left(x \leftarrow -\frac{3}{2} \right)$ C21 C22

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

S|| C11 C12 $(x \leftarrow -\frac{3}{2})$ C21 C22

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

 $S \parallel C$ 11 C12 $\left(x \leftarrow -\frac{3}{2} \right)$ C21 C22

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

 $S \parallel C11 \ C12 \ \left(x \leftarrow -\frac{3}{2}\right) \ C21 \ C22 \ \left(y \leftarrow \frac{5}{8}\right)$

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

 $S \parallel C11 \ C12 \ \left(x \leftarrow -rac{3}{2}
ight) \ C21 \ C22 \ \left(y \leftarrow rac{5}{8}
ight) \checkmark$

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

 $S \parallel C11 \ C12 \ \left(x \leftarrow -rac{3}{2}
ight) \ C21 \ C22 \ \left(y \leftarrow rac{5}{8}
ight) \checkmark$

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

SC² SS 2017 51 / 59

S || C 1 1

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

SC² SS 2017 51 / 59

$S \parallel C 11 \ (x \leftarrow 0)$

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

SC² SS 2017 51 / 59

 $S \| C \| (x \leftarrow 0) C \| C \|$

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

SC² SS 2017 51 / 59

 $S||C11 (x \leftarrow 0) C21 \times$

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

SC² SS 2017 51 / 59

$S||C||(x \leftarrow 0) C|| \times C||C|| = 0$ is $y^2 + 1 \le 0$

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

SC² SS 2017 51 / 59

CAD: construct cylindrical cell, then specialize to some model point α

э

- 4 回 ト 4 ヨ ト 4 ヨ

CAD: construct cylindrical cell, then specialize to some model point α

A

CAD: construct cylindrical cell, then specialize to some model point α

э

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

CAD: construct cylindrical cell, then specialize to some model point α

э

A (10) A (10) A (10)

CAD: construct cylindrical cell, then <u>specialize</u> to some model point α

2

CAD: construct cylindrical cell, then specialize to some model point α

э

< 6 b

CAD: construct cylindrical cell, then specialize to some model point α

2

CAD: construct cylindrical cell, then <u>specialize</u> to some model point α

2

CAD: construct cylindrical cell, then <u>specialize</u> to some model point α NLSAT: construct model point α , then <u>generalize</u> to a cylindrical cell

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

SC² SS 2017 53 / 59

$S||C11 (x \leftarrow 0) C21 \times \leftarrow C21 \text{ at } x = 0 \text{ is } y^2 + 1 \le 0$ generalize conflict to cell $x > \operatorname{root}_1 x^2 - x - 1 \land x < \operatorname{root}_2 x^2 - x - 1$

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

SC² SS 2017 53 / 59

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

 $S||C11 (x \leftarrow 0) C21 \times \leftarrow C21 \text{ at } x = 0 \text{ is } y^2 + 1 \le 0$ generalize conflict to cell $x > \operatorname{root}_1 x^2 - x - 1 \land x < \operatorname{root}_2 x^2 - x - 1$

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

 $S || C 11 (x \leftarrow 0) C 21 \times \leftarrow C 21 \text{ at } x = 0 \text{ is } y^2 + 1 \le 0$

 $S \parallel C 1 1$

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

SC² SS 2017

53 / 59

 $S || C 11 \ (x \leftarrow 0) \ C 21 \times \leftarrow C 21 \ \text{at } x = 0 \ \text{is } y^2 + 1 \le 0$ $S || C 11 \ C 1x$

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

$$S||C11 (x \leftarrow 0) C21 \times \leftarrow C21 \text{ at } x = 0 \text{ is } y^2 + 1 \le 0$$
$$S||C11 C1x (x \leftarrow -\frac{9}{8})$$

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

$S||C11 \ (x \leftarrow 0) \ C21 \times \leftarrow C21 \ \text{at} \ x = 0 \ \text{is} \ y^2 + 1 \le 0$ $S||C11 \ C1x \ (x \leftarrow -\frac{9}{8}) \ C21$

 $S||C11 \ (x \leftarrow 0) \ C21 \times \leftarrow C21 \ \text{at} \ x = 0 \ \text{is} \ y^2 + 1 \le 0$ $S||C11 \ C1x \ (x \leftarrow -\frac{9}{8}) \ C21 \ C22$

$S||C11 (x \leftarrow 0) C21 \times \leftarrow C21 \text{ at } x = 0 \text{ is } y^2 + 1 \le 0$ $S||C11 C1x (x \leftarrow -\frac{9}{8}) C21 C22 (y \leftarrow \frac{11}{10})$

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

$S||C11 (x \leftarrow 0) C21 \times \leftarrow C21 \text{ at } x = 0 \text{ is } y^2 + 1 \le 0$ $S||C11 C1x (x \leftarrow -\frac{9}{8}) C21 C22 (y \leftarrow \frac{11}{10}) C31$

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

SC² SS 2017 53 / 59

$S||C11 (x \leftarrow 0) C21 \times C21 \text{ at } x = 0 \text{ is } y^2 + 1 \le 0$ $S||C11 C1x (x \leftarrow -\frac{9}{8}) C21 C22 (y \leftarrow \frac{11}{10}) C31 C32$

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

SC² SS 2017 53 / 59

くゆう くほう くほう 二日

$S||C11 (x \leftarrow 0) C21 \times \leftarrow C21 \text{ at } x = 0 \text{ is } y^2 + 1 \le 0$ $S||C11 C1x (x \leftarrow -\frac{9}{8}) C21 C22 (y \leftarrow \frac{11}{10}) C31 C32 C33$

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

SC² SS 2017 53 / 59

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

SC² SS 2017 53 / 59

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

S||C| ($x \leftarrow 0$) C| $x \leftarrow C|$ at x = 0 is $y^2 + 1 \le 0$

 $\begin{array}{l} S||C11 \ C1x \ (x \leftarrow -\frac{9}{8}) \ C21 \ C22 \ (y \leftarrow \frac{11}{10}) \ C31 \ C32 \ C33 \times \\ \circ \ above \ \left(-\frac{9}{8}, \frac{11}{10}\right) \ constraints \ C31 \ and \ C33 \ conflict \ independent \ of \ C32 \end{array}$

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

SC² SS 2017 54 / 59

э

イロト イポト イヨト イヨト

• we know point $\alpha = \left(-\frac{9}{8}, \frac{11}{10}\right)$

SC² SS 2017 54 / 59

3

- we know point $\alpha = \left(-\frac{9}{8}, \frac{11}{10}\right)$
- we know on the line above α , $z > \frac{3}{2} \wedge z^2 + x y < 0$ is violated

A (10) A (10)

- we know point $\alpha = \left(-\frac{9}{8}, \frac{11}{10}\right)$
- we know on the line above α , $z > \frac{3}{2} \wedge z^2 + x y < 0$ is violated
- we compute $P_3(\{z \frac{3}{2}, z^2 + x y\}) = \{y x, 4y 4x 9\}$

- A TE N - A TE N

- we know point $\alpha = \left(-\frac{9}{8}, \frac{11}{10}\right)$
- we know on the line above α , $z > \frac{3}{2} \wedge z^2 + x y < 0$ is violated
- we compute $P_3(\{z \frac{3}{2}, z^2 + x y\}) = \{y x, 4y 4x 9\}$... so over any region s.t. $\{y - x, 4y - 4x - 9\}$ sign-invariant

4 E N 4 E N

- we know point $\alpha = \left(-\frac{9}{8}, \frac{11}{10}\right)$
- we know on the line above α , $z > \frac{3}{2} \wedge z^2 + x y < 0$ is violated
- we compute $P_3(\{z \frac{3}{2}, z^2 + x y\}) = \{y x, 4y 4x 9\}$... so over any region s.t. $\{y - x, 4y - 4x - 9\}$ sign-invariant ... $\{z - \frac{3}{2}, z^2 + x - y\}$ are delineable

- we know point $\alpha = \left(-\frac{9}{8}, \frac{11}{10}\right)$
- we know on the line above α , $z > \frac{3}{2} \wedge z^2 + x y < 0$ is violated
- we compute $P_3(\{z \frac{3}{2}, z^2 + x y\}) = \{y x, 4y 4x 9\}$... so over any region s.t. $\{y - x, 4y - 4x - 9\}$ sign-invariant ... $\{z - \frac{3}{2}, z^2 + x - y\}$ are delineable ... so $z > \frac{3}{2} \land z^2 + x - y < 0$ is violated exactly as it is above α

- we know point $\alpha = \left(-\frac{9}{8}, \frac{11}{10}\right)$
- we know on the line above α , $z > \frac{3}{2} \wedge z^2 + x y < 0$ is violated
- we compute $P_3(\{z \frac{3}{2}, z^2 + x y\}) = \{y x, 4y 4x 9\}$... so over any region s.t. $\{y - x, 4y - 4x - 9\}$ sign-invariant ... $\{z - \frac{3}{2}, z^2 + x - y\}$ are delineable ... so $z > \frac{3}{2} \land z^2 + x - y < 0$ is violated exactly as it is above α
- we compute cylindrical cell *C* that <u>contains</u> α and is <u>sign-invariant</u> for $\{y x, 4y 4x 9\}$,

くゆ くうとく ひとう う

• we know point $\alpha = \left(-\frac{9}{8}, \frac{11}{10}\right)$

• we know on the line above α , $z > \frac{3}{2} \wedge z^2 + x - y < 0$ is violated

- we compute $P_3(\{z \frac{3}{2}, z^2 + x y\}) = \{y x, 4y 4x 9\}$... so over any region s.t. $\{y - x, 4y - 4x - 9\}$ sign-invariant ... $\{z - \frac{3}{2}, z^2 + x - y\}$ are delineable ... so $z > \frac{3}{2} \land z^2 + x - y < 0$ is violated exactly as it is above α
- we compute cylindrical cell *C* that <u>contains</u> α and is <u>sign-invariant</u> for $\{y x, 4y 4x 9\}$, $C := -\infty < x \land x < \infty \land x < y \land y < x + \frac{9}{4}$

くゆ くうとく ひとう う

• we know point $\alpha = \left(-\frac{9}{8}, \frac{11}{10}\right)$

• we know on the line above α , $z > \frac{3}{2} \wedge z^2 + x - y < 0$ is violated

- we compute $P_3(\{z \frac{3}{2}, z^2 + x y\}) = \{y x, 4y 4x 9\}$... so over any region s.t. $\{y - x, 4y - 4x - 9\}$ sign-invariant ... $\{z - \frac{3}{2}, z^2 + x - y\}$ are delineable ... so $z > \frac{3}{2} \land z^2 + x - y < 0$ is violated exactly as it is above α
- we compute cylindrical cell *C* that <u>contains</u> α and is <u>sign-invariant</u> for $\{y - x, 4y - 4x - 9\}$, $C := -\infty < x \land x < \infty \land x < y \land y < x + \frac{9}{4}$ **Note:** *C* generalizes conflicting point α

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

• we know point $\alpha = \left(-\frac{9}{8}, \frac{11}{10}\right)$

• we know on the line above α , $z > \frac{3}{2} \wedge z^2 + x - y < 0$ is violated

- we compute $P_3(\{z \frac{3}{2}, z^2 + x y\}) = \{y x, 4y 4x 9\}$... so over any region s.t. $\{y - x, 4y - 4x - 9\}$ sign-invariant ... $\{z - \frac{3}{2}, z^2 + x - y\}$ are delineable ... so $z > \frac{3}{2} \land z^2 + x - y < 0$ is violated exactly as it is above α
- we compute cylindrical cell *C* that <u>contains</u> α and is <u>sign-invariant</u> for {*y*−*x*, 4*y*−4*x*−9}, *C* := −∞ < *x* ∧ *x* < ∞ ∧ *x* < *y* ∧ *y* < *x*+⁹/₄
 Note: *C* generalizes conflicting point α
- we learn clause $\neg C = (x \ge y \lor y \ge x + \frac{9}{4})$

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

 $\begin{array}{l} S || C11 \ (x \leftarrow 0) \ C21 \ \times \leftarrow \ C21 \ \text{at} \ x = 0 \ \text{is} \ y^2 + 1 \le 0 \\ S || C11 \ C1x \ (x \leftarrow -\frac{9}{8}) \ C21 \ C22 \ (y \leftarrow \frac{11}{10}) \ C31 \ C32 \ C33 \ \times \end{array}$

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

 $\begin{array}{l} S || C11 \ (x \leftarrow 0) \ C21 \ \times \leftarrow \ C21 \ \text{at} \ x = 0 \ \text{is} \ y^2 + 1 \le 0 \\ S || C11 \ C1x \ (x \leftarrow -\frac{9}{8}) \ C21 \ C22 \ (y \leftarrow \frac{11}{10}) \ C31 \ C32 \ C33 \ \times \end{array}$

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

$$\begin{array}{l} S||C11 \ (x \leftarrow 0) \ C21 \ \times \leftarrow \ C21 \ \text{at} \ x = 0 \ \text{is} \ y^2 + 1 \le 0 \\ S||C11 \ C1x \ (x \leftarrow -\frac{9}{8}) \ C21 \ C22 \ (y \leftarrow \frac{11}{10}) \ C31 \ C32 \ C33 \ \times \\ S||C11 \ C1x \ (x \leftarrow -\frac{9}{8}) \ C21 \ C22 \end{array}$$

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

$$\begin{array}{l} S||C11 \ (x \leftarrow 0) \ C21 \ \times \leftarrow \ C21 \ \text{at} \ x = 0 \ \text{is} \ y^2 + 1 \le 0 \\ S||C11 \ C1x \ (x \leftarrow -\frac{9}{8}) \ C21 \ C22 \ (y \leftarrow \frac{11}{10}) \ C31 \ C32 \ C33 \ \times \\ S||C11 \ C1x \ (x \leftarrow -\frac{9}{8}) \ C21 \ C22 \ C2x \end{array}$$

$$\begin{array}{l} S||C11 \ (x \leftarrow 0) \ C21 \ \times \leftarrow \ C21 \ \text{at} \ x = 0 \ \text{is} \ y^2 + 1 \le 0 \\ S||C11 \ C1x \ (x \leftarrow -\frac{9}{8}) \ C21 \ C22 \ (y \leftarrow \frac{11}{10}) \ C31 \ C32 \ C33 \ \times \\ S||C11 \ C1x \ (x \leftarrow -\frac{9}{8}) \ C21 \ C22 \ C2x \ (y \leftarrow \frac{115}{100}) \end{array}$$

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

$$\begin{array}{l} S||C11 \ (x \leftarrow 0) \ C21 \ \times \leftarrow \ C21 \ \text{at} \ x = 0 \ \text{is} \ y^2 + 1 \le 0 \\ S||C11 \ C1x \ (x \leftarrow -\frac{9}{8}) \ C21 \ C22 \ (y \leftarrow \frac{11}{10}) \ C31 \ C32 \ C33 \ \times \\ S||C11 \ C1x \ (x \leftarrow -\frac{9}{8}) \ C21 \ C22 \ C2x \ (y \leftarrow \frac{115}{100}) \ C31 \end{array}$$

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

$$\begin{array}{l} S||C11 \ (x \leftarrow 0) \ C21 \ \times \leftarrow \ C21 \ \text{at} \ x = 0 \ \text{is} \ y^2 + 1 \le 0 \\ S||C11 \ C1x \ (x \leftarrow -\frac{9}{8}) \ C21 \ C22 \ (y \leftarrow \frac{11}{10}) \ C31 \ C32 \ C33 \ \times \\ S||C11 \ C1x \ (x \leftarrow -\frac{9}{8}) \ C21 \ C22 \ C2x \ (y \leftarrow \frac{115}{100}) \ C31 \ C32 \end{array}$$

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

$$\begin{array}{l} S||C11 \ (x \leftarrow 0) \ C21 \ \times \leftarrow \ C21 \ \text{at} \ x = 0 \ \text{is} \ y^2 + 1 \le 0 \\ S||C11 \ C1x \ (x \leftarrow -\frac{9}{8}) \ C21 \ C22 \ (y \leftarrow \frac{11}{10}) \ C31 \ C32 \ C33 \ \times \\ S||C11 \ C1x \ (x \leftarrow -\frac{9}{8}) \ C21 \ C22 \ C2x \ (y \leftarrow \frac{115}{100}) \ C31 \ C32 \ C33 \end{array}$$

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

$$\begin{array}{l} S||C11 \ (x \leftarrow 0) \ C21 \ \times \leftarrow \ C21 \ \text{at} \ x = 0 \ \text{is} \ y^2 + 1 \le 0 \\ S||C11 \ C1x \ (x \leftarrow -\frac{9}{8}) \ C21 \ C22 \ (y \leftarrow \frac{11}{10}) \ C31 \ C32 \ C33 \ \times \\ S||C11 \ C1x \ (x \leftarrow -\frac{9}{8}) \ C21 \ C22 \ C2x \ (y \leftarrow \frac{115}{100}) \ C31 \ C32 \ C33 \\ (z \leftarrow \frac{1504}{1000}) \end{array}$$

$$\begin{array}{l} S||C11 \ (x \leftarrow 0) \ C21 \ \times \leftarrow \ C21 \ \text{at} \ x = 0 \ \text{is} \ y^2 + 1 \le 0 \\ S||C11 \ C1x \ (x \leftarrow -\frac{9}{8}) \ C21 \ C22 \ (y \leftarrow \frac{11}{10}) \ C31 \ C32 \ C33 \ \times \\ S||C11 \ C1x \ (x \leftarrow -\frac{9}{8}) \ C21 \ C22 \ C2x \ (y \leftarrow \frac{115}{100}) \ C31 \ C32 \ C33 \\ (z \leftarrow \frac{1504}{1000}) \ \checkmark \end{array}$$

SAT/SMT Strategy

- 1. incrementally build model
- 2. learn by generalizing conflicts

Collins Strategy

- 1. univariate real root isolation
- 2. projection (eliminate variables)

SAT/SMT Strategy

- 1. incrementally build model
- 2. learn by generalizing conflicts

Collins Strategy

- 1. univariate real root isolation
- 2. projection (eliminate variables)

NLSAT is conflict-driven, incremental, optimistic, lazy ...

SAT/SMT Strategy

- 1. incrementally build model
- 2. learn by generalizing conflicts

Collins Strategy

- 1. univariate real root isolation
- 2. projection (eliminate variables)

NLSAT is conflict-driven, incremental, optimistic, lazy ...

What have we learned?

SAT/SMT Strategy

- 1. incrementally build model
- 2. learn by generalizing conflicts

Collins Strategy

- 1. univariate real root isolation
- 2. projection (eliminate variables)

NLSAT is conflict-driven, incremental, optimistic, lazy ...

What have we learned?

Be conflict-driven, incremental, optimistic, and lazy!

不得る 不良る 不良る
C. W. Brown (USNA)

CAD and Real Polynomial Constraints

SC² SS 2017 57 / 59

э

イロト イポト イヨト イヨト

• Decompositions can be useful (e.g. if the whole set is important)

< ロ > < 同 > < 回 > < 回 >

- Decompositions can be useful (e.g. if the whole set is important)
- We may still want to do quantifier elimination

不同 トイモトイモ

- Decompositions can be useful (e.g. if the whole set is important)
- We may still want to do quantifier elimination

Can we do something conflict-driven, incremental, optimistic, lazy ... ?

4 **A** N A **B** N A **B** N

$$y < 0 \wedge y + \frac{1}{2} > 0 \wedge y^2 - (x + \frac{1}{2})(x - \frac{1}{2})^2 > 0 \wedge \frac{1}{6}(x - \frac{1}{2})^2 + (y + \frac{1}{2})^2 - \frac{1}{4} < 0$$

<ロト <回ト < 回ト < 回ト = 三日

$$y < 0 \wedge y + \frac{1}{2} > 0 \wedge y^2 - (x + \frac{1}{2})(x - \frac{1}{2})^2 > 0 \wedge \frac{1}{6}(x - \frac{1}{2})^2 + (y + \frac{1}{2})^2 - \frac{1}{4} < 0$$

<ロト <回ト < 回ト < 回ト = 三日

 $y < 0 \wedge y + \frac{1}{2} > 0 \wedge y^2 - (x + \frac{1}{2})(x - \frac{1}{2})^2 > 0 \wedge \frac{1}{6}(x - \frac{1}{2})^2 + (y + \frac{1}{2})^2 - \frac{1}{4} < 0$

< 回 > < 回 > < 回 >

 $y < 0 \wedge y + \frac{1}{2} > 0 \wedge y^2 - (x + \frac{1}{2})(x - \frac{1}{2})^2 > 0 \wedge \frac{1}{6}(x - \frac{1}{2})^2 + (y + \frac{1}{2})^2 - \frac{1}{4} < 0$

 $y < 0 \wedge y + \frac{1}{2} > 0 \wedge y^2 - (x + \frac{1}{2})(x - \frac{1}{2})^2 > 0 \wedge \frac{1}{6}(x - \frac{1}{2})^2 + (y + \frac{1}{2})^2 - \frac{1}{4} < 0$

 $y < 0 \wedge y + \frac{1}{2} > 0 \wedge y^2 - (x + \frac{1}{2})(x - \frac{1}{2})^2 > 0 \wedge \frac{1}{6}(x - \frac{1}{2})^2 + (y + \frac{1}{2})^2 - \frac{1}{4} < 0$

SC² SS 2017 58 / 59

 $y < 0 \land y + \frac{1}{2} > 0 \land y^2 - (x + \frac{1}{2})(x - \frac{1}{2})^2 > 0 \land \frac{1}{6}(x - \frac{1}{2})^2 + (y + \frac{1}{2})^2 - \frac{1}{4} < 0$

 $y < 0 \wedge y + \frac{1}{2} > 0 \wedge y^2 - (x + \frac{1}{2})(x - \frac{1}{2})^2 > 0 \wedge \frac{1}{6}(x - \frac{1}{2})^2 + (y + \frac{1}{2})^2 - \frac{1}{4} < 0$

 $y < 0 \wedge y + \frac{1}{2} > 0 \wedge y^2 - (x + \frac{1}{2})(x - \frac{1}{2})^2 > 0 \wedge \frac{1}{6}(x - \frac{1}{2})^2 + (y + \frac{1}{2})^2 - \frac{1}{4} < 0$

 $y < 0 \wedge y + \frac{1}{2} > 0 \wedge y^2 - (x + \frac{1}{2})(x - \frac{1}{2})^2 > 0 \wedge \frac{1}{6}(x - \frac{1}{2})^2 + (y + \frac{1}{2})^2 - \frac{1}{4} < 0$

 $y < 0 \land y + \frac{1}{2} > 0 \land y^2 - (x + \frac{1}{2})(x - \frac{1}{2})^2 > 0 \land \frac{1}{6}(x - \frac{1}{2})^2 + (y + \frac{1}{2})^2 - \frac{1}{4} < 0$

 $y < 0 \land y + \frac{1}{2} > 0 \land y^2 - (x + \frac{1}{2})(x - \frac{1}{2})^2 > 0 \land \frac{1}{6}(x - \frac{1}{2})^2 + (y + \frac{1}{2})^2 - \frac{1}{4} < 0$

 $y < 0 \wedge y + \frac{1}{2} > 0 \wedge y^2 - (x + \frac{1}{2})(x - \frac{1}{2})^2 > 0 \wedge \frac{1}{6}(x - \frac{1}{2})^2 + (y + \frac{1}{2})^2 - \frac{1}{4} < 0$

 $y < 0 \land y + \frac{1}{2} > 0 \land y^2 - (x + \frac{1}{2})(x - \frac{1}{2})^2 > 0 \land \frac{1}{6}(x - \frac{1}{2})^2 + (y + \frac{1}{2})^2 - \frac{1}{4} < 0$

 $y < 0 \land y + \frac{1}{2} > 0 \land y^2 - (x + \frac{1}{2})(x - \frac{1}{2})^2 > 0 \land \frac{1}{6}(x - \frac{1}{2})^2 + (y + \frac{1}{2})^2 - \frac{1}{4} < 0$

 $y < 0 \wedge y + \frac{1}{2} > 0 \wedge y^2 - (x + \frac{1}{2})(x - \frac{1}{2})^2 > 0 \wedge \frac{1}{6}(x - \frac{1}{2})^2 + (y + \frac{1}{2})^2 - \frac{1}{4} < 0$

 $y < 0 \wedge y + \frac{1}{2} > 0 \wedge y^2 - (x + \frac{1}{2})(x - \frac{1}{2})^2 > 0 \wedge \frac{1}{6}(x - \frac{1}{2})^2 + (y + \frac{1}{2})^2 - \frac{1}{4} < 0$

 $y < 0 \land y + \frac{1}{2} > 0 \land y^2 - (x + \frac{1}{2})(x - \frac{1}{2})^2 > 0 \land \frac{1}{6}(x - \frac{1}{2})^2 + (y + \frac{1}{2})^2 - \frac{1}{4} < 0$

 $y < 0 \wedge y + \frac{1}{2} > 0 \wedge y^2 - (x + \frac{1}{2})(x - \frac{1}{2})^2 > 0 \wedge \frac{1}{6}(x - \frac{1}{2})^2 + (y + \frac{1}{2})^2 - \frac{1}{4} < 0$

 $y < 0 \wedge y + \frac{1}{2} > 0 \wedge y^2 - (x + \frac{1}{2})(x - \frac{1}{2})^2 > 0 \wedge \frac{1}{6}(x - \frac{1}{2})^2 + (y + \frac{1}{2})^2 - \frac{1}{4} < 0$

 $y < 0 \wedge y + \frac{1}{2} > 0 \wedge y^2 - (x + \frac{1}{2})(x - \frac{1}{2})^2 > 0 \wedge \frac{1}{6}(x - \frac{1}{2})^2 + (y + \frac{1}{2})^2 - \frac{1}{4} < 0$

 $y < 0 \wedge y + \frac{1}{2} > 0 \wedge y^2 - (x + \frac{1}{2})(x - \frac{1}{2})^2 > 0 \wedge \frac{1}{6}(x - \frac{1}{2})^2 + (y + \frac{1}{2})^2 - \frac{1}{4} < 0$

 $y < 0 \wedge y + \frac{1}{2} > 0 \wedge y^2 - (x + \frac{1}{2})(x - \frac{1}{2})^2 > 0 \wedge \frac{1}{6}(x - \frac{1}{2})^2 + (y + \frac{1}{2})^2 - \frac{1}{4} < 0$

 $y < 0 \wedge y + \frac{1}{2} > 0 \wedge y^2 - (x + \frac{1}{2})(x - \frac{1}{2})^2 > 0 \wedge \frac{1}{6}(x - \frac{1}{2})^2 + (y + \frac{1}{2})^2 - \frac{1}{4} < 0$

 $y < 0 \wedge y + \frac{1}{2} > 0 \wedge y^2 - (x + \frac{1}{2})(x - \frac{1}{2})^2 > 0 \wedge \frac{1}{6}(x - \frac{1}{2})^2 + (y + \frac{1}{2})^2 - \frac{1}{4} < 0$

 $y < 0 \wedge y + \frac{1}{2} > 0 \wedge y^2 - (x + \frac{1}{2})(x - \frac{1}{2})^2 > 0 \wedge \frac{1}{6}(x - \frac{1}{2})^2 + (y + \frac{1}{2})^2 - \frac{1}{4} < 0$

 $y < 0 \wedge y + \frac{1}{2} > 0 \wedge y^2 - (x + \frac{1}{2})(x - \frac{1}{2})^2 > 0 \wedge \frac{1}{6}(x - \frac{1}{2})^2 + (y + \frac{1}{2})^2 - \frac{1}{4} < 0$

 $y < 0 \wedge y + \frac{1}{2} > 0 \wedge y^2 - (x + \frac{1}{2})(x - \frac{1}{2})^2 > 0 \wedge \frac{1}{6}(x - \frac{1}{2})^2 + (y + \frac{1}{2})^2 - \frac{1}{4} < 0$

 $y < 0 \wedge y + \frac{1}{2} > 0 \wedge y^2 - (x + \frac{1}{2})(x - \frac{1}{2})^2 > 0 \wedge \frac{1}{6}(x - \frac{1}{2})^2 + (y + \frac{1}{2})^2 - \frac{1}{4} < 0$

 $y < 0 \wedge y + \frac{1}{2} > 0 \wedge y^2 - (x + \frac{1}{2})(x - \frac{1}{2})^2 > 0 \wedge \frac{1}{6}(x - \frac{1}{2})^2 + (y + \frac{1}{2})^2 - \frac{1}{4} < 0$

 $y < 0 \wedge y + \frac{1}{2} > 0 \wedge y^2 - (x + \frac{1}{2})(x - \frac{1}{2})^2 > 0 \wedge \frac{1}{6}(x - \frac{1}{2})^2 + (y + \frac{1}{2})^2 - \frac{1}{4} < 0$
Applying "generalize-from-a-model-point" to CAD

 $y < 0 \wedge y + \frac{1}{2} > 0 \wedge y^2 - (x + \frac{1}{2})(x - \frac{1}{2})^2 > 0 \wedge \frac{1}{6}(x - \frac{1}{2})^2 + (y + \frac{1}{2})^2 - \frac{1}{4} < 0$

The result is not a CAD, but something new

 $y < 0 \wedge y + \frac{1}{2} > 0 \wedge y^2 - (x + \frac{1}{2})(x - \frac{1}{2})^2 > 0 \wedge \frac{1}{6}(x - \frac{1}{2})^2 + (y + \frac{1}{2})^2 - \frac{1}{4} < 0$

The result is not a CAD, but something new, a NuCAD

 $y < 0 \wedge y + \frac{1}{2} > 0 \wedge y^2 - (x + \frac{1}{2})(x - \frac{1}{2})^2 > 0 \wedge \frac{1}{6}(x - \frac{1}{2})^2 + (y + \frac{1}{2})^2 - \frac{1}{4} < 0$

< 回 > < 三 > < 三 >

What have I learned?

CAD and Real Polynomial Constraints

SC² SS 2017 59 / 59

э

イロト イヨト イヨト イヨト

What have I learned?

The value of SC²

C. W. Brown (USNA)

CAD and Real Polynomial Constraints

 $\mathbb{E} \times \mathbb{E} \times \mathbb{E} \to \mathbb{E}$ $\mathfrak{O} \otimes \mathbb{C}^2$ SS 2017 59/59

< ロ > < 同 > < 回 > < 回 >