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Symbolic Computing with Real Polynomial Constraints

By “polynomial constraints” we mean a first order formula in
elementary real algebra, which we will refer to as Tarski Formulas.
Here are some examples:

I (x1y1 < 1 ∨ 2x1 < −1) ∧ x2
1 + x2

2 = 1
I ∃x2∀x3[x1 + x2 < 2⇒ x1x2

2 − x2
3 + x3 < 2]

Tarski formulas are a natural language for real polynomial
constraints. Restrictions (e.g. to just conjunctions or just
equations) don’t have nice closure properties.
If we fix an order for the free variables in a Tarski formula, we have
a natural association between Tarski formulas and geometric
objects called semi-algebraic sets.

F (x1, . . . , xn)←→ {(α1, . . . , αn) ∈ Rn | F (α1, . . . , αn)}
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LOGIC GEOMETRY

Tarski formula

ba
si

c
ob

je
ct semi-algebraic set S ⊆ R2

x2
1 +x2

2−1 < 0∧

 x2 + x1 > 0
∨

x2 − x1 < 0



∧ , ∨ , ¬ op
s

∩ , ∪ ,

∃x1, x2[x1 > 0 ∧ x2 > 0 ∧ . . .] S
AT S

?
6= ∅

∃x2[x1 > 0 ∧ x2 > 0 ∧ . . .]

ex
-Q
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π1(S)
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Implicit/explicit representations of semi-algebraic sets

Is one of these empty? Which?

F1 :=

 −91x + 10y2 − 7 > 0 ∧ −54x − 43yx + 63 > 0∧
−79x2 + 4y − 61 > 0 ∧ −49x2 + 42y + 97 > 0∧

27xy + 25y + 72 > 0 ∧ −47x − 57yx + 1 > 0



F2 :=

 35x + 41yx − 72 > 0 ∧ −32x2 − 4y + 45 > 0∧
42x2 − 13y + 14 > 0 ∧ −73x + 21yx − 18 > 0∧

24x2 + 7y + 79 > 0 ∧ −81x − 46yx − 96 > 0


What is the dimension of the set defined by this Tarski formula?

F3 :=
[
x4 − 4x3 + 6x2 + y2 − 4x + 4y + 5 ≤ 0

]
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Implicit/explicit representations of semi-algebraic sets

Tarski formulas are an implicit representation, which has limitations:
hard to tell if the set is empty
no obvious information on the dimension of the set
complement, intersection and union can be expressed, but without
meaningful information
projection can be expressed, but without meaningful information

With an explicit representation of semi-algebraic sets we should
be able to read off emptiness/non-emptiness (dimension too?)
be able to produce model points for non-empty sets
be able to reasonably compute projection & complement (keys to
quantifier elimination!)
be able to produce representation from Tarski formulas (and it’d be
nice if we could convert back to Tarski formulas)

The point: CAD provides just such an explicit representation
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CAD out in the wild
Partial or full implementations of CAD out in the world include:

Mathematica — CAD available to user and used for many op-
erations: Resolve, Reduce, Plotting, Integration over regions, etc.
Maple — provides CAD to the user and uses it for the “solve”
command
Maple via the external RegularChains library — also provides Q.E.
Maple via SyNRAC — uses CAD behaind the scenes for Q.E.
Reduce/Redlog — uses CAD behind the scenes for Q.E.
Qepcad/QepcadB/Tarski — provides CAD to user and uses it for
Q.E. and simplification
Z3 & Yices — partial implementation of CAD in the NLSAT
algorithm
SMTRAT — provides CAD adapted to SMT solving
others?
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SMTRAT — provides CAD adapted to SMT solving
others?
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Part I: CAD Basics
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Cylindrical Cell — the basic idea

l3 < z < u3
l2 < y < u2
l1 < x < u1

Note:
We must fix a variable order (here x < y < z) to do this!
We define the level of a variable to be its place in this order.
E.g. the level of y is 2, the level of z is 3.
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Cylindrical Cell — indexed root expressions 1

x4+y4 < 1∧3y−x > 11/8∧x > 0

Mathematica syntax for algebraic functions
0 < x < Root

[
335872#14 + 22528#13 + 46464#12 + 42592#1− 317135&, 2

]
1
24 (8x + 11) < y < Root

[
#14 + x4 − 1&, 2

]
Maple syntax for algebraic functions
0 < x < RootOf(335872Z 4 + 22528Z 3 + 46464Z 2 + 42592Z − 317135, index = real[2])
1
3 x + 11

24 < y < RootOf(Z 4 + x4 − 1, index = real[2])

QEPCAD B syntax for algebraic functions
0 < x < root2 335872x4 + 22528x3 + 46464x2 + 42592x − 317135
1
24 (8x + 11) < y < root2 y4 + x4 − 1

C. W. Brown (USNA) CAD and Real Polynomial Constraints SC2 SS 2017 10 / 59



Cylindrical Cell — indexed root expressions 1

x4+y4 < 1∧3y−x > 11/8∧x > 0

Mathematica syntax for algebraic functions
0 < x < Root

[
335872#14 + 22528#13 + 46464#12 + 42592#1− 317135&, 2

]
1
24 (8x + 11) < y < Root

[
#14 + x4 − 1&, 2

]

Maple syntax for algebraic functions
0 < x < RootOf(335872Z 4 + 22528Z 3 + 46464Z 2 + 42592Z − 317135, index = real[2])
1
3 x + 11

24 < y < RootOf(Z 4 + x4 − 1, index = real[2])

QEPCAD B syntax for algebraic functions
0 < x < root2 335872x4 + 22528x3 + 46464x2 + 42592x − 317135
1
24 (8x + 11) < y < root2 y4 + x4 − 1

C. W. Brown (USNA) CAD and Real Polynomial Constraints SC2 SS 2017 10 / 59



Cylindrical Cell — indexed root expressions 1

x4+y4 < 1∧3y−x > 11/8∧x > 0

Mathematica syntax for algebraic functions
0 < x < Root

[
335872#14 + 22528#13 + 46464#12 + 42592#1− 317135&, 2

]
1
24 (8x + 11) < y < Root

[
#14 + x4 − 1&, 2

]
Maple syntax for algebraic functions
0 < x < RootOf(335872Z 4 + 22528Z 3 + 46464Z 2 + 42592Z − 317135, index = real[2])
1
3 x + 11

24 < y < RootOf(Z 4 + x4 − 1, index = real[2])

QEPCAD B syntax for algebraic functions
0 < x < root2 335872x4 + 22528x3 + 46464x2 + 42592x − 317135
1
24 (8x + 11) < y < root2 y4 + x4 − 1

C. W. Brown (USNA) CAD and Real Polynomial Constraints SC2 SS 2017 10 / 59



Cylindrical Cell — indexed root expressions 1

x4+y4 < 1∧3y−x > 11/8∧x > 0

Mathematica syntax for algebraic functions
0 < x < Root

[
335872#14 + 22528#13 + 46464#12 + 42592#1− 317135&, 2

]
1
24 (8x + 11) < y < Root

[
#14 + x4 − 1&, 2

]
Maple syntax for algebraic functions
0 < x < RootOf(335872Z 4 + 22528Z 3 + 46464Z 2 + 42592Z − 317135, index = real[2])
1
3 x + 11

24 < y < RootOf(Z 4 + x4 − 1, index = real[2])

QEPCAD B syntax for algebraic functions
0 < x < root2 335872x4 + 22528x3 + 46464x2 + 42592x − 317135
1
24 (8x + 11) < y < root2 y4 + x4 − 1

C. W. Brown (USNA) CAD and Real Polynomial Constraints SC2 SS 2017 10 / 59



Cylindrical Cell — indexed root expressions 2

Definition: The indexed root expression

xk σ rooti p(x1, . . . , xk )

where σ ∈ {<,≤, >,≥,=, 6=} and p ∈ Z[x1, . . . , xk ] is true at
point (α1, . . . , αk ) ∈ Rk if

1 p(α1, . . . , αk−1, z) has at least i distinct real roots, and
2 αk σ β holds, where β is the i th distinct root of

p(α1, . . . , αk−1, z), in ascending order.

In this (QEPCAD B syntax), σ and “root” form a new predicate.
In the context of cell descriptions, we will require that xk is the
highest-level variable in p, and that the bounds on lower-level
variables guarantee that p(α1, . . . , αk−1, z) has at least i distinct
real roots.
Mathematica’s “Root” expressions count multiplicities.
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Cylindrical Cell — delineability

We need the indexed root expressions that define cell boundaries to
be well-behaved over the base of the cell:

they should define functions
that are continuous, non-intersecting, and (perhaps) smooth.

y = root1 y2 − x2 + 1
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Cylindrical Cell — delineability

Delineability is a condition that captures what we need to define
boundaries of cylindrical cells.

Definition: polynomial f (x1, . . . , xk ) is delineable over connected
region S ⊆ Rk−1 if

for all α ∈ S we have f (α, xk ) 6= 0
the the set of real roots of f (α, xk ), α ∈ S is either empty or it
consists of finitely many continuous functions θ1 < · · · < θt from S
to R, with t ≥ 1; and, in the latter case
there exist positive integers m1, . . . ,mt such that, for all α ∈ S and
all i , mi is the multiplicity of θi(α) as a root of f (α, xk ).

Set {f1, . . . , fr} of k -level polynomials is delineable if f1f2 · · · fr is
delineable.

The θi ’s are referred to as the sections of f over S.

C. W. Brown (USNA) CAD and Real Polynomial Constraints SC2 SS 2017 13 / 59



Cylindrical Cell — delineability

Delineability is a condition that captures what we need to define
boundaries of cylindrical cells.

Definition: polynomial f (x1, . . . , xk ) is delineable over connected
region S ⊆ Rk−1 if

for all α ∈ S we have f (α, xk ) 6= 0
the the set of real roots of f (α, xk ), α ∈ S is either empty or it
consists of finitely many continuous functions θ1 < · · · < θt from S
to R, with t ≥ 1; and, in the latter case
there exist positive integers m1, . . . ,mt such that, for all α ∈ S and
all i , mi is the multiplicity of θi(α) as a root of f (α, xk ).

Set {f1, . . . , fr} of k -level polynomials is delineable if f1f2 · · · fr is
delineable.

The θi ’s are referred to as the sections of f over S.

C. W. Brown (USNA) CAD and Real Polynomial Constraints SC2 SS 2017 13 / 59



Cylindrical Cell — delineability

Delineability is a condition that captures what we need to define
boundaries of cylindrical cells.

Definition: polynomial f (x1, . . . , xk ) is delineable over connected
region S ⊆ Rk−1 if

for all α ∈ S we have f (α, xk ) 6= 0
the the set of real roots of f (α, xk ), α ∈ S is either empty or it
consists of finitely many continuous functions θ1 < · · · < θt from S
to R, with t ≥ 1; and, in the latter case
there exist positive integers m1, . . . ,mt such that, for all α ∈ S and
all i , mi is the multiplicity of θi(α) as a root of f (α, xk ).

Set {f1, . . . , fr} of k -level polynomials is delineable if f1f2 · · · fr is
delineable.

The θi ’s are referred to as the sections of f over S.

C. W. Brown (USNA) CAD and Real Polynomial Constraints SC2 SS 2017 13 / 59



Cylindrical Cell — delineability

Delineability is a condition that captures what we need to define
boundaries of cylindrical cells.

Definition: polynomial f (x1, . . . , xk ) is delineable over connected
region S ⊆ Rk−1 if

for all α ∈ S we have f (α, xk ) 6= 0
the the set of real roots of f (α, xk ), α ∈ S is either empty or it
consists of finitely many continuous functions θ1 < · · · < θt from S
to R, with t ≥ 1; and, in the latter case
there exist positive integers m1, . . . ,mt such that, for all α ∈ S and
all i , mi is the multiplicity of θi(α) as a root of f (α, xk ).

Set {f1, . . . , fr} of k -level polynomials is delineable if f1f2 · · · fr is
delineable.

The θi ’s are referred to as the sections of f over S.

C. W. Brown (USNA) CAD and Real Polynomial Constraints SC2 SS 2017 13 / 59



Cylindrical Cell — delineability examples
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Cylindrical Cell — degenerate bounds

0 < x < root2 2x2 − 1 ∧ x < y < root2 2x2 − 1
0 < x < root2 2x2 − 1 ∧ y = root2 2x2 − 1
x = root2 2x2 − 1 ∧ y = root2 2x2 − 1

If the k -level bound for a cell is given as an open interval, the cell is
said to be a k -level sector. Otherwise it is a k -level section.
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If the k -level bound for a cell is given as an open interval, the cell is
said to be a k -level sector. Otherwise it is a k -level section.
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Cylindrical Cell - a formal definition

Definition: A cylindrical algebraic cell in Rk .

1. R0 is a cylindrical algebraic cell in R0.
2. if C is a cylindrical algebraic cell in Rk then

a) {(α1, . . . , αk , β) ∈ C × R | β = rooti f (α, z)} where f is delineable over
C with at least i sections, is a cylindrical algebraic cell in Rk+1,

b) {(α1, . . . , αk , β) ∈ C × R | β > rooti f (α, z) and β < rootjg(α, z)} where
{f ,g} is delineable over C, f having at least i sections, g having at
least j sections, and section rooti f everywhere less than section rootjg,
is a cylindrical algebraic cell in Rk+1,

3. nothing else is a cylindrical cell.
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Cylindrical Cell - What’s so great?

a cylindrical cell is a semi-algebraic set
cylindrical cells are exclicitly represented objects!
projection is trivial for cylindrical cells
determining the dimension of a cylindrical cell is trivial
producing example points in the cell is relatively easy (i.e. only
involves univariate polynomial real root isolation), contrast that
with a set defined by an arbitrary formula!
determining whether a given point is in the cell is relatively easy,
which is not always the case with explicitly represented objects
cylindrical cells have nice descriptions in terms of algebraic
functions, though they are not tarski formulas
it is possible to produce a tarski formula description of a cell
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Cylindrical Cell - a closing example
Let S ⊆ R3 be defined by F := [x2 + y2 + z2 < 1 ∧ xyz < 1/8]

cylindrical algebraic cell C ⊆ S

root1 z2 + y2 + x2 − 1 < z < root2 z2 + y2 + x2 − 1

root1 y2 + x2 − 1 < y < root1 64x2y4 + 64x4y2 − 64x2y2 + 1
root1 4x3 − 4x − 1 < x < root2 4x3 − 4x − 1

Find a sample/model point α = (

− 1/2

,

− 53/64

,

1/8

) ∈ C
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Find a sample/model point α = (

− 1/2

,

− 53/64

,

1/8

) ∈ C

Via unvivarate real root isolation on the bounds for x we get
−0.8375 . . . < x < −0.2695 . . . −→ choose x = −1/2
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Substitute x = −1/2 into the bounds for y getting
root1 y2 +
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− 1

2

)2−1 < y < root1 64
(
− 1

2

)2
y4 +64

(
− 1

2

)4
y2−64

(
− 1

2

)2
y2 +1

Via unvivarate real root isolation we get
−0.8660 . . . < y < −0.8090 . . . −→ choose y = −53/64 = −0.828125
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Via unvivarate real root isolation we get
−0.2533 . . . < z < 0.2533 . . . −→ choose z = 1/8 = 0.125
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Cylindrically Arranged Cells

Definition: A set D of cylindrical cells in Rn is cylindrically arranged if
for all c1, c2 ∈ D and 0 < k ≤ n, the projections onto Rk of c1 and c2
are either identical or disjoint.
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Cylindrically Arranged Cells

Theorem: Suppose semi-algebraic set S is definined as a union of
elements in a set Dn of disjoint cylindrical cells in Rn that are
cylindrically arranged. For 0 ≤ k ≤ n, define Dk = {πk (c) | c ∈ Dn}.

The elements of Dk are disjoint cylindrical cells in Rk that are
cylindrically arranged, and
πk (S) =

⋃
c∈Dk

c
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Time out to compute

x4 + y2 < 1 ∧ (x + y)(x − y) < 0 ∧ y > −x − 1 ∧ (x + 1/2) > 0
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Cylindrically Arranged Cells
Cylindrical formula: start with the disjunction of defining formulas for
the cells in Dk , and level by level factor out common subexpressions.

0 < x < 1 ∧ y < −1
∨
0 < x < 1 ∧ 0 < y < root2 y2 + x2 − 1
∨
x = 0 ∧ y < −1
∨
1 < x < root2x2 − 2 ∧ y < −1
∨
1 < x < root2x2 − 2 ∧ root1(x − 1)y − 1 < y
⇓

0 < x < 1 ∧
(

y < −1∨
0 < y < root2 y2 + x2 − 1

)
∨
x = 0 ∧ y < −1
∨

1 < x < root2x2 − 2 ∧
(

y < −1∨
root1(x − 1)y − 1 < y

)
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Cylindrically Arranged Cells — let’s sum up

Describing a semi-algebraic set as a union of cylindrically arranged
cells, whether factored into a cylindrical formula or not, is a natural
idea.
1. It is an explicit description (SAT/dimension/model-points/projection

are easy).
2. It gives us a natural “split by cases” description.
3. However:

How could we compute complement in this representation?
How we could construct such a thing from a Tarski formula?

So we have to look one step further to find an explicit representation
that meets all of our goals ...
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CAD — a definition ... finally

Defintion: A Cylindrical Algebraic Decomposition (CAD) is a
decomposition of Rn into cylindrical cells that are cylindrically
arranged.

On its own, a CAD does not represent a semi-algebraic set. But if
we attach truth labels to each cell, then this “CAD+truth-labels”
can be viewed as a representation of the semi-algebraic set
defined by the union of the cells labeled true.
In this representation, complement is easy: just toggle the cells’
truth values! So all that’s left is this: how, given a Tarski formula,
do we construct a CAD+truth-values representation of the same
semi-algebraic set?
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CAD — A picture
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CAD — the CAD construction problem

Problem: Given quantifier-free Tarski formula F in variables x1, . . . , xn,
produce a CAD of Rn that is truth-invariant for F .

Note 1: When we say that a CAD is g-invariant for some function
g : Rn → Q, we mean that the for each cell in the CAD it holds that
the value of g at any two points in the cell is the same. Here, g is
F , and Q is {true, false}.
Note 2: When we say “produce a CAD”, we intend that one has
each cell represented so that a sample point or cylindrical formula
defining the cell is either stored or can be easily produced.
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CAD — an observation

Consider F = {x2 + y2 − 1 < 0 ∧ (x − y)(xy − 1/4) < 0}

Let A = {x2 + y2 − 1, x − y , xy − 1/4} (i.e. the poly’s in F )
If CAD D is sign invariant for A then it is truth invariant for F , where
“sign invariant for A” means if p1, . . . ,pk are the elements of A, D
is invariant for the function g(x) = (sgn(p1(x)), . . . , sgn(pk (x)).

Focus on sign-invariant CADs!
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CAD — the 1D case

Example: F = [x2 − 2 >= 0 ∧ 8x3 − 56x − 49 < 0]

A = {x2 − 2,8x3 − 56x − 49}

Univariate real root isolation on of the elements of A ...

β1 = −1.97..., α1 = −1.41..., β2 = −1.03..., α2 = 1.41..., β3 = 3.00...

(−∞, β1), [β1], (β1, α1), [α1], (α1, β2), [β2], (β2, α2), [α2], (α2, β3), [β3], (β3,∞)

−4 −3/2 −5/4 0 2 4
p1 : + + + 0 − − − 0 + + +

p2 : − 0 + + + 0 − − − 0 +

F : T F F F F F F T T F F
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2D Example: [36y2−2x3−9x2 < 0∧ (x +2)y −2 < 0]
A := {36y2 − 2x3 − 9x2, (x + 2)y − 2}
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2D Ex: [36y2 − 2x3 − 9x2 < 0 ∧ (x + 2)y − 2 < 0]
{p,q} ∪ {ldcfy (q),discy (p), resy (p,q)}
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CAD — Collins’ key ideas

Wanted: cells in which An are sign-invariant

Compute: Pn(An) ∈ Z[x1, . . . , xn−1] s.t. if cell S ∈ Rn−1 is sign-invariant
for Pn(An), then An are delineable over S
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CAD — How to construct a sign-invariant CAD

Given: set A of irreducible polynomials in Z[x1, . . . , xn]

1 split A into An = {p ∈ A | degxn
p = 1} and A<n (the rest)

2 compute Pn, the “projection of An”
Note: for n = 2, Pn can be ldcf’s, discrim’s & resultants of An

3 set B = A<n ∪ {irreducible factors of Pn}
4 recursively compute CAD Dn−1 of Rn−1 that is sign-invariant for B
5 for each cell c ∈ Dn−1 (call its sample point α)

create 1D CAD Dc that is sign-invariant for An evaluated at α

Each cell d in Dc represents a cell in the CAD of Rn!
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Each cell d in Dc represents a cell in the CAD of Rn!
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CAD — Collins’ original CAD

The process just described was developed by George Collins in the
early 1970s. It is built on ...

a projection operator that produces Pn, and
univariate real root isolation for polynomials with algebraic number
coefficients.

Collins’ Original Projection Operator:

ProjC(A,n) := ProjC1(A,n) ∪ ProjC2(A,n), where

ProjC1(A,n) :=
⋃

f∈A
⋃

g∈REDxn (f )
({ldcfxn(g)} ∪ PSCxn(g,g′))

ProjC2(A,n) :=
⋃

f1,f2∈A
⋃

g1 ∈ REDxn (f1)
g2 ∈ REDxn (f2)

PSCxn(g1,g2)
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Projection Example 3D

∃z
[
x2 + y2 + z2 − 1 < 0 ∧ 2(x + y)z − 1 > 0 ∧ y > 0

]

A = {x2 + y2 + z2 − 1,2(x + y)z − 1, y}
A3 = {x2 + y2 + z2 − 1,2(x + y)z − 1}

P(A3) = {y2 + x2 − 1, y + x ,
4y4 + 8xy3 + 8x2y2 − 4y2 + 8x3y − 8xy + 4x4 − 4x2 + 1}

B = A<3 ∪ P(A3)
B2 = {y , y2 + x2 − 1, y + x ,

4y4 + 8xy3 + 8x2y2 − 4y2 + 8x3y − 8xy + 4x4 − 4x2 + 1}
P(B2) = {x + 1, x − 1, x ,32x6 − 80x4 + 85x2 − 32,2x2 − 1}

A ∪ B ∪ P(B2) is called the "projection factor set"
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Sign-invariant CAD: construction & projection
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End of Part I

What have we learned?

CAD as an explicit representation of semi-algebraic sets
Cylindrical cells, indexed root expressions, delineability
Univariate real root isolation: the engine that makes CAD go
Cylindrical arrangement, Cylindrical formulas, CAD + truth-values
Truth-invariant vs. sign-invariant CAD & Collins’ original algorithm
(the role of the “projection operator”)
The ease of projection in the CAD representation

What haven’t we learned (that we won’t today)

How to actually do univariate polynomial real root isolation
How to compute discriminants, resultants, PSC’s and other
polynomial operations used by projection operators

What’s next?
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Part II: Problem formulation
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Example b1: Let’s see CAD work
Suppose we had the following quantifier-elimination problem:

∀x , y
[
y2 + x2 < a⇒ ax + by < 1

]

¬∃x , y¬
[
y2 + x2 < a⇒ ax + by < 1

]
¬∃x , y

[
y2 + x2 < a ∧ ax + by ≥ 1

]
To construct a CAD of R2 for ∀x , y

[
y2 + x2 < a⇒ ax + by < 1

]
...

1. construct CAD for y2 + x2 < a ∧ ax + by ≥ 1
2. project to eliminate x and y
3. negate by swapping truth values

Only works for orders! (a,b, x , y), (b,a, x , y), (a,b, y , x), (b,a, y , x)

C. W. Brown (USNA) CAD and Real Polynomial Constraints SC2 SS 2017 38 / 59



Example b1: Let’s see CAD work
Suppose we had the following quantifier-elimination problem:

∀x , y
[
y2 + x2 < a⇒ ax + by < 1

]
¬∃x , y¬

[
y2 + x2 < a⇒ ax + by < 1

]

¬∃x , y
[
y2 + x2 < a ∧ ax + by ≥ 1

]
To construct a CAD of R2 for ∀x , y

[
y2 + x2 < a⇒ ax + by < 1

]
...

1. construct CAD for y2 + x2 < a ∧ ax + by ≥ 1
2. project to eliminate x and y
3. negate by swapping truth values

Only works for orders! (a,b, x , y), (b,a, x , y), (a,b, y , x), (b,a, y , x)

C. W. Brown (USNA) CAD and Real Polynomial Constraints SC2 SS 2017 38 / 59



Example b1: Let’s see CAD work
Suppose we had the following quantifier-elimination problem:

∀x , y
[
y2 + x2 < a⇒ ax + by < 1

]
¬∃x , y¬

[
y2 + x2 < a⇒ ax + by < 1

]
¬∃x , y

[
y2 + x2 < a ∧ ax + by ≥ 1

]

To construct a CAD of R2 for ∀x , y
[
y2 + x2 < a⇒ ax + by < 1

]
...

1. construct CAD for y2 + x2 < a ∧ ax + by ≥ 1
2. project to eliminate x and y
3. negate by swapping truth values

Only works for orders! (a,b, x , y), (b,a, x , y), (a,b, y , x), (b,a, y , x)

C. W. Brown (USNA) CAD and Real Polynomial Constraints SC2 SS 2017 38 / 59



Example b1: Let’s see CAD work
Suppose we had the following quantifier-elimination problem:

∀x , y
[
y2 + x2 < a⇒ ax + by < 1

]
¬∃x , y¬

[
y2 + x2 < a⇒ ax + by < 1

]
¬∃x , y

[
y2 + x2 < a ∧ ax + by ≥ 1

]
To construct a CAD of R2 for ∀x , y

[
y2 + x2 < a⇒ ax + by < 1

]
...

1. construct CAD for y2 + x2 < a ∧ ax + by ≥ 1
2. project to eliminate x and y
3. negate by swapping truth values

Only works for orders! (a,b, x , y), (b,a, x , y), (a,b, y , x), (b,a, y , x)

C. W. Brown (USNA) CAD and Real Polynomial Constraints SC2 SS 2017 38 / 59



Example b1: Let’s see CAD work
Suppose we had the following quantifier-elimination problem:

∀x , y
[
y2 + x2 < a⇒ ax + by < 1

]
¬∃x , y¬

[
y2 + x2 < a⇒ ax + by < 1

]
¬∃x , y

[
y2 + x2 < a ∧ ax + by ≥ 1

]
To construct a CAD of R2 for ∀x , y

[
y2 + x2 < a⇒ ax + by < 1

]
...

1. construct CAD for y2 + x2 < a ∧ ax + by ≥ 1

2. project to eliminate x and y
3. negate by swapping truth values

Only works for orders! (a,b, x , y), (b,a, x , y), (a,b, y , x), (b,a, y , x)

C. W. Brown (USNA) CAD and Real Polynomial Constraints SC2 SS 2017 38 / 59



Example b1: Let’s see CAD work
Suppose we had the following quantifier-elimination problem:

∀x , y
[
y2 + x2 < a⇒ ax + by < 1

]
¬∃x , y¬

[
y2 + x2 < a⇒ ax + by < 1

]
¬∃x , y

[
y2 + x2 < a ∧ ax + by ≥ 1

]
To construct a CAD of R2 for ∀x , y

[
y2 + x2 < a⇒ ax + by < 1

]
...

1. construct CAD for y2 + x2 < a ∧ ax + by ≥ 1
2. project to eliminate x and y

3. negate by swapping truth values

Only works for orders! (a,b, x , y), (b,a, x , y), (a,b, y , x), (b,a, y , x)

C. W. Brown (USNA) CAD and Real Polynomial Constraints SC2 SS 2017 38 / 59



Example b1: Let’s see CAD work
Suppose we had the following quantifier-elimination problem:

∀x , y
[
y2 + x2 < a⇒ ax + by < 1

]
¬∃x , y¬

[
y2 + x2 < a⇒ ax + by < 1

]
¬∃x , y

[
y2 + x2 < a ∧ ax + by ≥ 1

]
To construct a CAD of R2 for ∀x , y

[
y2 + x2 < a⇒ ax + by < 1

]
...

1. construct CAD for y2 + x2 < a ∧ ax + by ≥ 1
2. project to eliminate x and y
3. negate by swapping truth values

Only works for orders! (a,b, x , y), (b,a, x , y), (a,b, y , x), (b,a, y , x)

C. W. Brown (USNA) CAD and Real Polynomial Constraints SC2 SS 2017 38 / 59



Example b1: Let’s see CAD work
Suppose we had the following quantifier-elimination problem:

∀x , y
[
y2 + x2 < a⇒ ax + by < 1

]
¬∃x , y¬

[
y2 + x2 < a⇒ ax + by < 1

]
¬∃x , y

[
y2 + x2 < a ∧ ax + by ≥ 1

]
To construct a CAD of R2 for ∀x , y

[
y2 + x2 < a⇒ ax + by < 1

]
...

1. construct CAD for y2 + x2 < a ∧ ax + by ≥ 1
2. project to eliminate x and y
3. negate by swapping truth values

Only works for orders! (a,b, x , y), (b,a, x , y), (a,b, y , x), (b,a, y , x)
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Prenex and Variable Ordering Constraints
Prenex form — basic Collins-style CAD requires(

Q1xi1 , . . . xi2−1
) (

Q2xi2 , . . . xi3−1
)
· · · (Qr xir , . . . xn) [F (x1, . . . , xn)]

where Qj ∈ {∃,∀}, Qi 6= Qi+1 and F is quantifier-free

Any formula can be put in prenex form

∃z[z > 0 ∧ ∀y [(2− x)z2 + y2 > 0] ∧ ∃y [xy = 1]]

∃z[z > 0 ∧ ∀y1[(2− x)z2 + y2
1 > 0] ∧ ∃y2[xy2 = 1]]

∃z∃y2∀y1[z > 0 ∧ [(2− x)z2 + y2
1 > 0] ∧ [xy2 = 1]]

Variables can only be reordered within their block
Given prenex formula with r quantifier blocks, we have a strict
partial order that constrains CAD variable order:

x < y if x free and y bound, or block(x) before block(y)
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Example b3: Order matters

Consider a CAD for the formula below using the Collins projection:

zw2+wx+w−2y+z+4x−1 < 0∧2yw2−3wz−4w−2z+4x−3y+y < 0∧x > 0∧y > 0∧z > 0

If we use the order x , y , z,w , we get 3240 projection factors!
If we use the order w , z, y , x , we get 24 projection factors!
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Choosing a variable ordering

The choice of variable ordering is hugely important!

In general, one can only reorder variables within the same block
Several ways to choose ordering (see [Dolzman, Seidl, Sturm
2004], [Huang, Davenport, England ... 2014], ...)
Simple hueristic

1. Descending order by degree of variable, breaking ties with
2. Descending order by highest total-degree term in which the variable

appears, breaking ties with
3. Descending order by number of terms containing the variable
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Simplifications that should be done prior to CAD

Often formulas include constraints like:

x = 0, y = x ,3x − 2y = 1,ax + b = 0

E.g. happens when automatically specializing a general formula.
These are better dealt with prior to using CAD
Example 4b (∀x)(∃y , z)[z + (x3 − 5x + 2)y ≥ 0 ∧ z = 0 ∧ y = 0]

I extract A = {z + (x3 − 5x + 2)y , z, y}
I fix order x < y < z
I project Proj(A, z) = {. . . , x3 − 5x + 2, . . . , y , . . .}
I ...

No matter what, x3 − 5x + 2 is in the projection factor set!

Punchline: Do linear substituions before CAD construction!
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Splitting up formulas
Depending on the quantifier, we may split formulas up

I (∃y)[F (x , y) ∨G(x , y)]⇔ (∃y)[F (x , y)] ∨ (∃y)[F (x , y)]
I (∀y)[F (x , y) ∧G(x , y)]⇔ (∀y)[F (x , y)] ∧ (∀y)[F (x , y)]

Example b5: with absolute value, we might do this systematically

(∃α)[|x − α| < 1 ∧ −17αt − 44αx + 71tx − 82α+ 80t + 62x < 0︸ ︷︷ ︸
C

]

|x − α| < 1⇔

 x > α ∧ x − α < 1 ∨
x < α ∧ α− x < 1 ∨
x = α ∧ 0 < 1



(∃α)

 x > α ∧ x − α < 1 ∧ C ∨
x < α ∧ α− x < 1 ∧ C ∨
x = α ∧ 0 < 1 ∧ C

 ←− solve each separately!
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A Word about defining formulas
Finishing off the previous example ...

(∃α)[x > α ∧ x − α < 1 ∧ C]︸ ︷︷ ︸



27xt + 40t − 22x2

−10x < 0
∨

54xt + 97t − 44x2

+24x + 82 < 0



∨ (∃α)[x < α ∧ α− x < 1 ∧ C]︸ ︷︷ ︸



27xt + 40t − 22x2

−10x < 0
∨

54xt + 63t − 44x2

−64x − 82 < 0



∨ (∃α)[x = α ∧ 0 < 1 ∧ C]︸ ︷︷ ︸

[
27xt + 40t − 22x2

−10x < 0

]

However ... it can be that substantial extra work is needed to construct
a Tarski formula from the CAD representation, making this approach
seem less attractive when there is another quantifier block.

However (again) ... without substantial extra work, we can construct a
formula with indexed-root expressions and (though we won’t cover it
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End of Part II

What have we learned?
The importance of variable ordering
Carrying out simplification (e.g. linear substitutions) prior to CAD
construction
The value of splitting up inputs and the distinction betweeen Tarski
formulas for results vs. formulas with indexed root expressions.
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Complexity

Constructing a CAD via Collins’ original algorithm takes time

O
(
(2n)22r+8

m2r+6
d3
)

where r = # of variables,
n = max degree of input in any variable,
m = # of input polynomials,
d = max bitlength of coefficients.

This is really unfortunate complexity.
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Speeding up CAD

How can we improve upon the original Collins CAD?

1. make univariate real root isolation faster
Roullier-Zimmerman 2004, Sagraloff-Melhorn 2016,...

2. make the projection sets smaller
Hong, McCallum, Lazard, ...

3. sign-invaraint CAD is blind to the input formula ...
tie the input formula, projection and lifting together

I Partial CAD (Hong & Collins)
I Equational constraints (McCallum & Collins)
I Truth table invariant CAD (Davenport & England & others ...)
I Divide & Conquer / incremental CAD (Strzebonski, Kremer, ...)
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Part III: SMT meets computer
algebra in NLSAT
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Big picture to keep in mind

SAT/SMT Strategy
1. incrementally build model
2. learn by generalizing conflicts

Collins Strategy
1. univariate real root isolation
2. projection (eliminate variables)

The NLSAT algorithm of Jovanović and de Moura (2012) is a beautiful
synthesis of the two!
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NLSAT Example 1: incrementally build a model
C11︷ ︸︸ ︷

(x > 1 ∨ x < −1)∧

C12︷ ︸︸ ︷
x2 < 3∧(

C21︷ ︸︸ ︷
y2 − 2xy + x > 0 ∨ y < −2) ∧

C22︷ ︸︸ ︷
x3 + y2 < 2xy

S||

C11 C12
(
x ← −3

2

)
C21 C22

(
y ← 5

8

)
X
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NLSAT Example 2: learn by generalizing conflicts

C11︷ ︸︸ ︷
x2 − 2 < 0∧

C21︷ ︸︸ ︷
y2 − x2 + x + 1 ≤ 0∧(

C22︷ ︸︸ ︷
y > 1 ∨ y < −2) ∧

C31︷ ︸︸ ︷
z >

3
2
∧

C32︷ ︸︸ ︷
z − x2y − 1 < 0∧

C33︷ ︸︸ ︷
z2 + x − y < 0

S||

C11 (x ← 0) C21 ×← C21 at x = 0 is y2 + 1 ≤ 0
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idea

CAD: construct cylindrical cell, then specialize to some model point α

NLSAT: construct model point α, then generalize to a cylindrical cell
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NLSAT Example 2: learn by generalizing conflicts

C11︷ ︸︸ ︷
x2 − 2 < 0∧

C21︷ ︸︸ ︷
y2 − x2 + x + 1 ≤ 0∧(

C22︷ ︸︸ ︷
y > 1 ∨ y < −2) ∧

C31︷ ︸︸ ︷
z >

3
2
∧

C32︷ ︸︸ ︷
z − x2y − 1 < 0∧

C33︷ ︸︸ ︷
z2 + x − y < 0

∧
(x ≤ root1x2 − x − 1 ∨ x ≥ root2x2 − x − 1︸ ︷︷ ︸

C1x

)

S||C11 (x ← 0) C21 ×← C21 at x = 0 is y2 + 1 ≤ 0

generalize conflict to cell x > root1x2 − x − 1 ∧ x < root2x2 − x − 1
S||C11 C1x

(
x ← −9

8

)
C21 C22

(
y ← 11

10

)
C31 C32 C33 ×

◦ above
(
−9

8 ,
11
10

)
constraints C31 and C33 conflict independent of C32
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◦ above
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11
10
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“Learn by generalizing conflicts” in detail

we know point α =
(
−9

8 ,
11
10

)
we know on the line above α, z > 3

2 ∧ z2 + x − y < 0 is violated

we compute P3({z − 3
2 , z

2 + x − y}) = {y − x ,4y − 4x − 9}

... so over any region s.t. {y − x ,4y − 4x − 9} sign-invariant

... {z − 3
2 , z

2 + x − y} are delineable
... so z > 3

2 ∧ z2 + x − y < 0 is violated exactly as it is above α

we compute cylindrical cell C that contains α and is sign-invariant
for {y −x ,4y −4x −9},

C := −∞ < x ∧x <∞∧x < y ∧y < x + 9
4

Note: C generalizes conflicting point α

we learn clause ¬C =
(
x ≥ y ∨ y ≥ x + 9

4

)
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NLSAT Example 2: learn by generalizing conflicts

C11︷ ︸︸ ︷
x2 − 2 < 0∧

C21︷ ︸︸ ︷
y2 − x2 + x + 1 ≤ 0∧(

C22︷ ︸︸ ︷
y > 1 ∨ y < −2) ∧

C31︷ ︸︸ ︷
z >

3
2
∧

C32︷ ︸︸ ︷
z − x2y − 1 < 0∧

C33︷ ︸︸ ︷
z2 + x − y < 0

∧
(x ≤ root1x2 − x − 1 ∨ x ≥ root2x2 − x − 1︸ ︷︷ ︸

C1x

)

∧ (y ≤ x ∨ y ≥ +9/4︸ ︷︷ ︸
C2x

)

S||C11 (x ← 0) C21 ×← C21 at x = 0 is y2 + 1 ≤ 0
S||C11 C1x

(
x ← −9

8

)
C21 C22

(
y ← 11

10

)
C31 C32 C33 ×

S||C11 C1x
(
x ← −9

8

)
C21 C22 C2x

(
y ← 115

100

)
C31 C32 C33(

z ← 1504
1000

)
X
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C2x

)

S||C11 (x ← 0) C21 ×← C21 at x = 0 is y2 + 1 ≤ 0
S||C11 C1x

(
x ← −9

8

)
C21 C22

(
y ← 11

10

)
C31 C32 C33 ×

S||C11 C1x
(
x ← −9

8

)
C21 C22 C2x

(
y ← 115

100

)
C31 C32 C33(

z ← 1504
1000

)
X
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NLSAT: an SC2 success story (before SC2)

SAT/SMT Strategy
1. incrementally build model
2. learn by generalizing conflicts

Collins Strategy
1. univariate real root isolation
2. projection (eliminate variables)

NLSAT is conflict-driven, incremental, optimistic, lazy ...

What have we learned?
Be conflict-driven, incremental, optimistic, and lazy!
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And now, back to symbolic computation ...

Decompositions can be useful (e.g. if the whole set is important)
We may still want to do quantifier elimination

Can we do something conflict-driven, incremental, optimistic, lazy ... ?
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Applying “generalize-from-a-model-point” to CAD

y < 0∧y+ 1
2 > 0∧y2−(x+ 1

2)(x−
1
2)

2 > 0∧ 1
6(x−

1
2)

2+(y+ 1
2)

2− 1
4 < 0
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The result is not a CAD, but something new
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The result is not a CAD, but something new, a NuCAD
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Conclusion

What have I learned?

The value of SC2
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