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It all comes down to adding and removing redundant clauses

2/43



Redundant clauses

A clause is redundant with respect to a formula if adding it to
the formula preserves satisfiability.

» For unsatisfiable formulas, all clauses can be added,
including the empty clause ( ).
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Redundant clauses

A clause is redundant with respect to a formula if adding it to
the formula preserves satisfiability.

» For unsatisfiable formulas, all clauses can be added,
including the empty clause ( ).

A clause is redundant with respect to a formula if removing it
from the formula preserves unsatisfiability.

» For satisfiable formulas, all clauses can be removed.

Challenge regarding redundant clauses:
» How to check redundancy in polynomial time?

» ldeally find redundant clauses in linear time
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Preprocessing and Inprocessing in Practice
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Outline

Subsumption

Variable Elimination
Bounded Variable Addition
Blocked Clause Elimination
Hyper Binary Resolution

Unhiding Redundancy
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Tautologies and Subsumption

Definition (Tautology)

A clause C is a tautology if its contains two complementary
literals /, /.

Example
The clause (a\V bV b) is a tautology.

Definition (Subsumption)
Clause C subsumes clause D if and only if C C D.

Example
The clause (a Vv b) subsumes clause (a V bV €).
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Self-Subsuming Resolution

Self-Subsuming Resolution
cvl DvI (avbVvl) (avbVvcV)

D cchb (aVbVec)

resolvent D subsumes second antecedent DV |
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Self-Subsuming Resolution

Self-Subsuming Resolution

cvl DvI (avbVvl) (avbVvcV)
D cchb (aVbVec)

resolvent D subsumes second antecedent DV |

Example
Assume a CNF contains both antecedents

...(avbvihavbvcVvli)...
If D is added, then DV | can be removed

which in essence removes | from DV |
...(avbvilavbvec )...

Initially in the SATeLite preprocessor, [EenBiere'07]
now common in most solvers (i.e., as pre- and inprocessing)
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Self-Subsuming Example

Self-Subsuming Resolution

Cvl DvI (avbVvl) (avbvcVl)
D cchb (aVbVc)

resolvent D subsumes second antecedent DV |

Example: Remove literals using self-subsumption

(avbVvec) A
(3vbVve) A
(avbvd) A
( ) A

aVbVvec) A
avbvc) A
svbvd) A
a )

avevd vVevd

NSNS~

9/43



Self-Subsuming Example
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Cvl DvI (avbVvl) (avbvcVl)
D cchb (aVbVc)
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Example: Remove literals using self-subsumption
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Self-Subsuming Example

Self-Subsuming Resolution

Cvl DvI (avbVvl) (avbvcVl)
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resolvent D subsumes second antecedent DV |

Example: Remove literals using self-subsumption

A
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Self-Subsuming Resolution

Cvl DvI (avbVvl) (avbvcVl)
D cchb (aVbVc)

resolvent D subsumes second antecedent DV |

Example: Remove literals using self-subsumption
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Self-Subsuming Example

Self-Subsuming Resolution

Cvl DvI (avbVvl) (avbvcVl)
D cchb (aVbVc)

resolvent D subsumes second antecedent DV |

Example: Remove literals using self-subsumption

( bve) A (avbVve) A
( _ IAa(a _ A
(a3vb ) A (avbvd) A
(aveé ) A (avevd)
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Implementing Subsumtion

Definition (Subsumption)
Clause C subsumes clause D if and only if C C D.

Example
The clause (a Vv b) subsumes clause (a vV bV €).

Forward Subsumption

for each clause C in formula F do
if C is subsumed by a clause D in F\ C then
remove C from F
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Implementing Subsumtion

Definition (Subsumption)
Clause C subsumes clause D if and only if C C D.

Example
The clause (a Vv b) subsumes clause (a vV bV €).

Forward Subsumption

for each clause C in formula F do
if C is subsumed by a clause D in F\ C then
remove C from F

Backward Subsumption

for each clause C in formula F do
pick a literal /in C
remove all clauses D in F; that are subsumed by C
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Variable Elimination
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Variable Elimination [DavisPutnam'60]

Definition (Resolution)

Given two clauses C = (x V a; V ---V a;) and

D = (xV by V---Vbj), the resolvent of C and D on variable
x (denoted by C ®, D) is (a1 V---Va; Vb V---Vb)
Resolution on sets of clauses F, and F; (denoted by F, ®, Fx)

generates all (non-tautological) resolvents of C € F, and
D e Fs.
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Variable Elimination [DavisPutnam'60]

Definition (Resolution)

Given two clauses C = (x V a; V ---V a;) and

D = (xV by V---Vbj), the resolvent of C and D on variable
x (denoted by C ®, D) is (a1 V---Va; Vb V---Vb)

Resolution on sets of clauses F, and F; (denoted by F, ®, Fx)
generates all (non-tautological) resolvents of C € F, and
D e Fs.

Definition (Variable elimination (VE))

Given a CNF formula F, variable elimination (or DP resolution)
removes a variable x by replacing F, and Fx by F, ®, Fx

Proof procedure [DavisPutnam60]
VE is a complete proof procedure. Applying VE until fixpoint
results in either the empty formula (satisfiable) or empty

clause (unsatisfiable)
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Example VE by clause distribution [DavisPutnam'60]
Definition (Variable elimination (VE))

Given a CNF formula F, variable elimination (or DP resolution)
removes a variable x by replacing F, and F; by F, ®, F;
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Example VE by clause distribution [DavisPutnam'60]

Definition (Variable elimination (VE))

Given a CNF formula F, variable elimination (or DP resolution)
removes a variable x by replacing F, and F; by F, ®, F;

Example of clause distribution

,(ch) (x v d) (xVavb) )

(xV a) (aVc) (aVd) (av5\/l§)

Fx (X Vv b) (bVc) (bVd) (bVvavb)
(xvevf)| (cvevf) (dvevf) (avbvevf)
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Example VE by clause distribution [DavisPutnam'60]

Definition (Variable elimination (VE))

Given a CNF formula F, variable elimination (or DP resolution)
removes a variable x by replacing F, and F; by F, ®, F;

Example of clause distribution

X
A

e ~N

(x V c) (x v d) (xVavb)

(xV a) (aVc) (aVd) (av-a\-b)

Fx (X Vv b) (bVc) (bVd) tbv-av-b)
(xvevrf)| (cvevf) (dvevef) (avbVvevf)
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Example VE by clause distribution [DavisPutnam'60]

Definition (Variable elimination (VE))

Given a CNF formula F, variable elimination (or DP resolution)
removes a variable x by replacing F, and F; by F, ®, F;

Example of clause distribution

r(x\/c) (x v d) (x\/évl;)\

(xV a) (aVc) (aVd) (av-a\-b)

Fx (xV b) (bVc) (bV d) tbv-av-b)
(xvevrf)| (cvevf) (dvevef) (avbVvevf)

In the example: |F, ® Fx| > |F| + | F5|

Exponential growth of clauses in general
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VE by substitution [EenBiere07]

General idea
Detect gates (or definitions) x = GATE(ay, ..., a,) in the
formula and use them to reduce the number of added clauses
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gate Gy Gy
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VE by substitution [EenBiere07]

General idea
Detect gates (or definitions) x = GATE(ay, ..., a,) in the
formula and use them to reduce the number of added clauses

Possible gates

gate Gy Gy
AND(ay,...,a,) (xVaVv---Va,) (XxVa1),...,(xVap)
OR(a1,...,a,) (xVai),...,(xVa,) (XVaV---Va,)

ITE(c, t, f) (xVveEvit),(xVeVvrf) (kxvevit),(xVeVf)

Variable elimination by substitution [EenBiere07]
Let RX:FX\GX; R)—(:F)—(\G)—(.

Replace Fx A Fx by G, ®, Rx A Gz @4 R,.
Always less than F, ®, Fx !
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VE by substitution [EenBiere'07]

Example of gate extraction: x = AND(a, b)

Fo=(xVc)A(xVd)A(xVavh)
Fzs=(xVa)AN(xVb)A(xVEVT)
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VE by substitution [EenBiere'07]

Example of gate extraction: x = AND(a, b)

Fo=(xVc)A(xVd)A(xVavh)
Fr=(xVa)AN(xVb)AN(XVEVTF)

Example of substitution

Fax (;X
(;vC) (x v d) \r(xva‘\/E)‘
XVa (aV o) (aVvd)
G*{ Emg (bV c) (bV d) _
Ry { (x VEVT) (Zvbvevf)
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VE by substitution [EenBiere'07]

Example of gate extraction: x = AND(a, b)

Fo=(xVc)A(xVd)A(xVavh)
Fr=(xVa)AN(xVb)AN(XVEVTF)

Example of substitution

Fax (;X
(;VC) (x v d) \r(xva‘\/E)‘
XVa (aV o) (aVvd)
G*{ Evag (bV c) (bV d) _
Ry { (x VEVT) (Zvbvevf)

using substitution: |F, ® Fx| < |F| + |Fx|
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Bounded Variable Addition
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Bounded Variable Addition

Main ldea
Given a CNF formula F, can we construct a (semi)logically

equivalent F’ by introducing a new variable x ¢ VAR(F)
such that |F'| < |F|?
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Bounded Variable Addition

Main ldea

Given a CNF formula F, can we construct a (semi)logically
equivalent F’ by introducing a new variable x ¢ VAR(F)
such that |F'| < |F|?

Reverse of Variable Elimination
For example, replace the clauses

(aVc) (aVd)
(bVc) (bVv d)
(cvevf) (dvevr) (avbvevf)
b
’ (xva) (xvb) (xVevf)
(xVe) (xvd) (xVvavbh)

Challenge: how to find suitable patterns for replacement?
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Factoring Out Subclauses

Example
Replace

(a2vbvevd) (avbveve) (avbVveVi)

by
(xvd) (xVe) (xvf) (xvaVvbVc)

adds 1 variable and 1 clause  reduces number of literals by 2
Not compatible with VE, which would eliminate x immediately!

... S0 this does not work . ..
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Bounded Variable Addition

Example
Smallest pattern that is compatible: Replace

(avd) (aVve)
(bvd) (bVe)
(cvd) (cVe)

adds 1 variable removes 1 clause
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Bounded Variable Addition

Possible Patterns

(Xl\/Ll) (leLk) n k
: : = AAMXVL)
(VL) o (X V L) =
) p
replaced by A(yV X)) N Ay VL)
i=1 Jj=1

» Every k clauses share sets of literals L;
» There are n sets of literals X; that appear in clauses with L;
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Possible Patterns

OGVL) o (G VL) .

| : A AV L)
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Bounded Variable Addition on AtMostOneZero (1)

Example encoding of AtMostOneZero (x, X2, - . ., X,)

(X]_ V X2) AN (Xg V X]_o) N (Xg V XlO) N (X7 V XlO) N (X6 V X]_o)
(x1Vx3) A (x2Vx3) A (xsV xo) A (X7V X9) A (X6 V Xg)
(x1Vxa) A (x2aVxa) A(x3Vxa) A (x2Vx) A (X6V Xg)
(x1Vxs) A(x2Vxs) A (x3Vxs5) A (xaVx5) A (X V x7)
(x1 V) A (x2Vxs) A (x3Vx6) A (XaVX6) A (X5 V X5)
()(1 \Y )(7) AN ()(2 \% )67) A ()(3 vV )67) A ()(4 vV )(7) A ()(5 \% )(7)
()(1 V )Qg) VAN ()Qg V )Qg) A ()(3 vV )Qg) N ()(4 vV )Qg) A ()(5 \% )Qg)
()(1 V )Gg) VAN ()(2 V )q;) A ()(3 vV )q;) A ()(4 vV )Gg) N ()(5 \% )Gg)
(X1 V XlO) VAN (X2 V XlO) A (X3 V X10) A (X4 V X10) N (X5 V XlO)

>>>>> > > >
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Bounded Variable Addition on AtMostOneZero (1)

Example encoding of AtMostOneZero (x, X2, - . ., X,)

(X]_ V X2) AN (Xg V X]_o) N (Xg V XlO) N (X7 V XlO) N (X6 V X]_o)
(x1Vx3) A (x2Vx3) A (xsV xo) A (X7V X9) A (X6 V Xg)
(x1Vxa) A (x2aVxa) A(x3Vxa) A (x2Vx) A (X6V Xg)
(x1Vxs) A(x2Vxs) A (x3Vxs5) A (xaVx5) A (X V x7)
(1 Vxe) Ao Vxs) A sV xs) A (xaVxe) A (X5 V x)
(Ca V) A V) AOsVx) A (aVx) A (6 Vx)
(aVxs) Ao Vxs) ADsVxs) A (xaVxe) A (s Vxs)
(Vo) Ao Vxo) A sV xo) A (xaVxo) A (xsV x)
(Xl \% XlO) AN (X2 \% XlO) A (X3 \% XlO) N (X4 vV XlO) N (X5 vV XlO)

Replace (x; Vv x;) with i € {1..5},j € {6..10} by (x; V y), (x; V ¥)

>>>>> > > >
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Bounded Variable Addition on AtMostOneZero (2)

Example encoding of AtMostOneZero (x, X2, - . ., X,)

(X1 V X2) (Xg vV XlO) VAN (Xg V X10) VAN (X7 V X10) A (X6 V XlO) N
(x1 Vx3)A (%2 Vx3) A (xgVxo) A(x7V x9) A (X6 V Xg) A
()(1 V )64) N ()(2 V )64) A ()(3 V )(4) A ()(7 V )Q3) N ()Q5 V )Q3) N
()(1 V )Q;) N ()(2 V )Q;) VAN ()(3 V Xs ) VAN ()(4 V )Q;) N ()Qa vV )(7) N
(x1Vy)A (xxVy) A (xsVy) AN (xaVy) AN (xsVy) A
(X6 \/)7) N (X7 \/)_/) AN (Xg\/)_/) AN (Xg\/)7) N (Xlo\/)7)
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Bounded Variable Addition on AtMostOneZero (2)

Example encoding of AtMostOneZero (x, X2, - . ., X,)

(X1 V X2) (Xg vV XlO) VAN (Xg V X10) VAN (X7 V X10) A (X6 V XlO) N
(x1 Vx3)A (%2 Vx3) A (xgVxo) A(x7V x9) A (X6 V Xg) A
()(1 V )64) N ()62 V )64) A ()(3 V )64) A ()(7 V )Q3) N ()Q5 V )Qg) N
()(1 V )(5) N ()62 V )(5) AN ()(3 V )(5) AN ()(4 V )(5) N ()(6 V )67) N
CaVY)AN CoVy) A aVy) A(xaVy) A (xsVy) A
(X6 VY)AN (x2Vy) A (xsVy) A (VYY) A(xoVy)

Replace matched pattern
(aVZ)AN(oVzZ)A(sVzZ)A
(CuVZ)AN (s VZ)A(yVZ)
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Bounded Variable Addition on AtMostOneZero (3)

Example encoding of AtMostOneZero (x1, %o, . - ., X,)
(X]_ \/X2) (Xg \/X]_o)/\(Xg \/X]_o)/\(X7 \/X]_O)/\(Xﬁ \/XIO)
(

A
X1 \/X3) (Xg \/X3) AN (Xg \/Xg) VAN (X7 \/Xg) A (X6 \/Xg) A
(x1VZ)A (2VZ) A (x3VZ) A(x2Vxg) A (xVxs) A
(xaVZ)N (xsVZ) AN (yVZ) AN(xaVxs) A (x6Vx7)A
(xaVy)AN(xsVy) A(xVy) A GaVy) A (V)
(Xg \/y) N (Xlo\/)_/)
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Bounded Variable Addition on AtMostOneZero (3)

Example encoding of AtMostOneZero (x1, %o, . - ., X,)

(X1 vV X2) (Xg V XlO) A (Xg vV XlO) A (X7 vV X10) N (X6 V X10) N
(X1 V X3) N (X2 \% X3) AN (Xg \% Xg) VAN (X7 \% Xg) N (X6 vV Xg) N
(x1VZ)A (x2VZ) A (x3VZ) A(x2Vxg) A (xVxs) A
(xaVZ)N (xsVZ) AN (yVZ) AN(xaVxs) A (x6Vx7)A
(xaVy)AN (xsVy) A (eVY) A CaVy) A (eVY)
(xo Vy) A (x0V )

Replace matched pattern
(6 VW)A (o Vw)A (g Vw)A
(Xg\/V_V)/\(Xlo\/V_V)/\()_/\/VT/)
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Blocked Clause Elimination



Blocked Clauses [Kullmann'99]

Definition (Blocking literal)

A literal / in a clause C of a CNF F blocks C w.r.t. F if
for every clause D € Fj, the resolvent (C\ {/})U (D \ {/})
obtained from resolving C and D on [ is a tautology.

With respect to a fixed CNF and its clauses we have:

Definition (Blocked clause)
A clause is blocked if it contains a literal that blocks it.
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Blocked Clauses [Kullmann'99]

Definition (Blocking literal)

A literal / in a clause C of a CNF F blocks C w.r.t. F if
for every clause D € Fj, the resolvent (C\ {/})U (D \ {/})
obtained from resolving C and D on [ is a tautology.

With respect to a fixed CNF and its clauses we have:

Definition (Blocked clause)
A clause is blocked if it contains a literal that blocks it.

Example
Consider the formula (a\V b) A (aV bV E)A(3V c).
First clause is not blocked.
Second clause is blocked by both a and c.
Third clause is blocked by ¢

Proposition
Removal of an arbitrary blocked clause preserves satisfiability.
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Blocked Clause Elimination (BCE)

Definition (BCE)
While there is a blocked clause C in a CNF F, remove C from
F.

Example
Consider (aV b) A (aV bV E)A(3V c).
After removing either (aV bV €) or (3V c), the clause
(aV b) becomes blocked (no clause with either b or 3).

An extreme case in which BCE removes all clauses!
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Blocked Clause Elimination (BCE)

Definition (BCE)
While there is a blocked clause C in a CNF F, remove C from
F.

Example
Consider (aV b) A (aV bV E)A(3V c).
After removing either (aV bV €) or (3V c), the clause
(aV b) becomes blocked (no clause with either b or 3).

An extreme case in which BCE removes all clauses!

Proposition
BCE is confluent, i.e., has a unique fixpoint

» Blocked clauses stay blocked w.r.t. removal
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BCE very effective on circuits [JarvisaloBiereHeule'10]

BCE converts the Tseitin encoding to Plaisted Greenbaum
BCE simulates Pure literal elimination, Cone of influence and
much more

Example of circuit simplification by BCE on Tseitin encoding
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Hyper Binary Resolution [Bacchus-AAAIO2]
Definition (Hyper Binary Resolution Rule)

(IVEV LV - NL) (hVI) (V) oo (V)
(v 1)

binary edge S
hyper edge —_—
hyper binary edge ——

Hyper Binary Resolution Rule:

» combines multiple resolution steps into one
> uses one n-ary clauses and multiple binary clauses

» special case hyper unary resolution where | = /'
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Hyper Binary Resolution (HBR)

Definition (Hyper Binary Resolution)
Apply the hyper binary resolution rule until fixpoint

Example

Consider
(AVbB)A(EV)A(BVA)A(BVe)A(EVA)A(EVe)A(dVEVF).

Q 0 hyper binary resolvents:
() 3V F),(bVF),(EVF)

HBR is confluent, i.e., has a unique fixpoint
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Structural Hashing of AND-gates via HBR

gate g H g = flgr, - g&n) ‘ g <= fgr, .- g&n) ‘
“positive” “negative”

g = OR(g1, .- .,8&n) VeV -Vaen) (gVé&). ...(gVén)

g 1= AND(g1, - - ., &n) (&Vegi).--.(8Ven) (gV&Vv: V)

£ := XOR(g1, &2) Evave)(Evaeve) | (evaVve) (Ve V)

g = ITE(g1, &2, 83) EVvave) EVveve) | evaVve) (Ve Ve)

Definition (Structural Hashing of AND-gates)

Given a Boolean circuit with two equivalent gates, merge the gates.

Example

x = AND(a,b) : (xVa)A(XVb)A(xV
y =AND(a,b) : (yVa)A(yVbH)A(yV

—~
~
L

)
)

S O

V
V

L

the two HBRs (X \V y) and (x V y) express that x = y
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Non-transitive Hyper Binary Resolution (NHBR)

A problem with classic HBR is that it adds many transitive binary clauses

Example

Consider
(A3vb)A(GVe)A(bVd)A(bVe)A(EVA)A(EVeE)A(dVEVT).

adding (b f) or (2 f)
(( > @ makes (3 f) transitive

Solution [HeuleJarvisaloBiere 2013]

Add only non-transitive hyper binary resolvents
Can be implemented using an alternative unit propagation style
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Space Complexity of NHBR: Quadratic
Question regarding complexity [Biere 2009]
> Are there formulas where the transitively reduced hyper binary

resolution closure is quadratic in size w.r.t. to the size of the
original?

> where size = #clauses or size = #literals or size = #variables
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Yes!
Consider the formula F, = A\, ., (K VV)A (K VWAV WV y))

() ()
N 2
2R
(X AS
7 RERKCY
»,“1 ‘?’\y‘~(
VNN

\

F£variables: 2n + 2
F£clauses: 3n
#literals: 7n

(&)

n? hyper binary resolvents:
(i Vy)for1<i,j<n
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Unhiding Redundancy
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Redundancy

Redundant clauses:
» Removal of C € F preserves unsatisfiability of F
» Assign all | € C to false and check for a conflict in F\ {C}
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Redundancy

Redundant clauses:
» Removal of C € F preserves unsatisfiability of F
» Assign all | € C to false and check for a conflict in F\ {C}

Redundant literals:
» Removal of | € C preserves satisfiability of F
» Assign all I € C\ {/} to false and check for a conflict in F

Redundancy elimination during pre- and
in-processing

» Distillation [JinSomenzi2005]
» ReVivAl [PietteHamadiSais2008|
» Unhiding [HeuleJarvisaloBiere2011]
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Unhide: Binary implication graph (BIG)

unhide: use the binary clauses to detect redundant clauses and literals

/\/\ /\
\/ /\
\/ \/\/
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Unhide: Transitive reduction (TRD)

transitive reduction: remove shortcuts in the binary implication graph

a b
(ave)A(@Vd)A(bVd)A(bVe)A
(EVAANMAVAAEVF)AFVH)A
Ev-MA(EVEVAA(BVEVA A(avbVevdVeVfVgVh)
TRD
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Unhide: Hidden tautology elimination (HTE) (1)

HTE removes clauses that are subsumed by an implication in BIG

[\sY]
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Unhide: Hidden tautology elimination (HTE) (2)

HTE removes clauses that are subsumed by an implication in BIG

SN\ S
s SN
N NN

g

v AN(avbVevdVveViVgVh)

HTE
c—f—h
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Unhide: Hidden literal elimination (HLE)

HLE removes literal using the implication in BIG
h

/\/\ v
\/ /\

R —
Ay NSNS
(3Ve)A(avd)A(bvd)A(bVe)A
(EVF)A(dVT) fYA(FV h) A
(8VbVeM-e-Y e V £V h)
HLE

all but e imply h

also b implies e
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Unhide: TRD + HTE + HLE

unhide: redundancy elimination removes and adds arcs from BIG(F)
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Conclusions

Many pre- or in-processing techniques in SAT solvers:
» (Self-)Subsumption
Variable Elimination

v

Blocked Clause Elimination

v

v

Hyper Binary Resolution
Bounded Variable Addition
Equivalent Literal Substitution

v

v

Failed Literal Elimination

v

v

Autarky Reasoning
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