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introduction

Historically, automated reasoning ≡ uniform proof-search
procedures for First Order Logic

Limited success: is FOL the best compromise between
expressivity and efficiency?

Most recently R&D has focused on:

∙ addressing mostly (expressive enough) decidable fragments
of a certain logic

∙ incorporating domain-specific reasoning, e.g on:
∙ arithmetic reasoning
∙ equality
∙ data structures (arrays, lists, stacks, ...)
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introduction

Examples of this trend:

SAT: propositional formalization, Boolean reasoning
+ high degree of efficiency
− expressive (all NP-complete problems) but
involved encodings

SMT: first-order formalization, Boolean +
domain-specific reasoning
+ improves expressivity and scalability
− some (but acceptable) loss of efficiency

These lectures: an overview of SMT and its formal foundations
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the smt problem

Some problems are more naturally expressed in logics other
than propositional logic, e.g:

∙ Software verification needs reasoning about equality, arithmetic,
data structures, …

SMT is about deciding the satisfiability of a (usually quantifier-
free) FOL formula with respect to some background theory

∙ Example (Equality with Uninterpreted Functions):

g(a) = c ∧ ( f(g(a)) ̸= f(c) ∨ g(a) = d ) ∧ c ̸= d

Wide range of applications: Extended Static Checking [FLL+02],
Predicate abstraction [LNO06], Model checking [AMP06, HT08],
Scheduling [BNO+08b], Test generation [TdH08], …
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smt solvers

  

SAT Solver
DPLL

Core

Bit-Vectors

ArraysArithmetic

UF

assertions

explanations
conflicts
lemmas
propagations
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SAT Solver

∙ Only sees Boolean skeleton of
problem

∙ Builds partial model by
assigning truth values to literals

∙ Sends these literals to the core
as assertions
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Core

∙ Sends each assertion to the
appropriate theory

∙ Sends deduced literals to other
theories/SAT solver

∙ Handles theory combination
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Theory Solvers

∙ Decide T-satisfiability of a
conjunction of theory literals

∙ Incremental
∙ Backtrackable
∙ Conflict Generation
∙ Theory Propagation
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theories of interest: euf

Equality (=) with Uninterpreted Functions [NO80, BD94, NO07a]

Typically used to abstract unsupported constructs, e.g.:

∙ non-linear multiplication in arithmetic
∙ ALUs in circuits

Example: The formula

a ∗ (|b|+ c) = d ∧ b ∗ (|a|+ c) ̸= d ∧ a = b

is unsatisfiable, but no arithmetic reasoning is needed

If we abstract it to

mul(a, add(abs(b), c)) = d ∧ mul(b, add(abs(a), c)) ̸= d ∧ a = b

it is still unsatisfiable
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theories of interest: arithmetic

Very useful, for obvious reasons

Restricted fragments (over the reals or the integers) support
more efficient methods:

∙ Bounds: x ▷◁ k with ▷◁ ∈ {<, >, ≤, ≥, =} [BBC+05a]

∙ Difference logic: x− y ▷◁ k, with
▷◁ ∈ {<, >, ≤, ≥, =} [NO05, WIGG05, CM06]

∙ UTVPI: ±x± y ▷◁ k, with ▷◁ ∈ {<, >, ≤, ≥, =} [LM05]

∙ Linear arithmetic, e.g: 2x− 3y+ 4z ≤ 5 [DdM06a]

∙ Non-linear arithmetic, e.g:
2xy+ 4xz2 − 5y ≤ 10 [BLNM+09, ZM10, JdM12]
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theories of interest: arrays

Used in software verification and hardware verification (for
memories) [SBDL01, BNO+08a, dMB09a]

Two interpreted function symbols _[_] and store

Axiomatized by:

∙ ∀a ∀i∀v. store(a, i, v)[i] = v
∙ ∀a ∀i∀j∀v. i ̸= j⇒ store(a, i, v)[j] = a[j])

Sometimes also with extensionality :

∙ ∀a ∀b. (∀i. a[i] = b[i] ⇒ a = b)

Is the following set of literals satisfiable in this theory?

store(a, i, x) ̸= b, b[i] = y, store(b, i, x)[j] = y, a = b, i = j
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theories of interest: bit vectors

Useful both in hardware and software
verification [BCF+07, BB09a, HBJ+14b]

Universe consists of (fixed-sized) vectors of bits

Different types of operations:

∙ String-like: concat, extract, …
∙ Logical: bit-wise not, or, and, …
∙ Arithmetic: add, subtract, multiply, …
∙ Comparison: <,>, …

Is this formula satisfiable over bit vectors of size 3?

a[1 : 0] ̸= b[1 : 0] ∧ (a | b) = c ∧ c[0 : 0] = 0 ∧ a[1 : 0] + b[1 : 0] = 0

11



other interesting theories

∙ Floating point arithmetic [BDG+14, ZWR14]

∙ Ordinary differential equations [GKC13]

∙ (Co)Algebraic data-types [BST07, RB16]

∙ Strings and regular expressions [LRT+14, KGG+09]

∙ Finite sets with cardinality [BRBT16]

∙ Finite relations [MRTB17]

∙ …
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theory solvers

Given a theory T, a Theory Solver for T takes as input a set Φ of
literals and determines whether Φ is T-satisfiable.

Φ is T-satisfiable iff there is some model M of T such that each
formula in Φ holds in M.
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equality and uninterpreted functions

∙ Literals are of the form t1 = t2 and t1 ̸= t2

∙ Can be decided in O(n log(n)) based on congruence closure

∙ Efficient theory propagation for equalities

∙ Can generate:
∙ small explanations [DNS05]
∙ minimal (i.e., non-redundant) explanations [NO07b]
∙ smallest explanations (NP-hard) [FFHP]

∙ Typically the core of the SMT solver and used in other
theories
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euf: congruence closure

Main idea: apply congruence axiom:

x1 = y1 ∧ · · · ∧ xn = yn ⇒ f(x1, . . . , xn) = f(y1, . . . , yn)

Example

[ f(x, y) = x, h(y) = g(y), f(f(x, y), y) = z, g(x) ̸= g(z) ]

Conflict Set:

1. g(x) ̸= g(z)
2. f(f(x, y), y) = z
3. f(x, y) = x

f(f(x,y),y)

f(x,y)

x y z

h(x) g(x) g(z)
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arrays

∀a, i, e : store(a, i, e)[i] = e
∀a, i, j, e : i ̸= j⇒ store(a, i, e)[j] = a[j]
∀a,b : a ̸= b⇒ ∃i : a[i] ̸= b[i]

Common approach:

∙ UF + lemmas on demand [BB09b, DMB09b]
∙ Use EUF as if store and _[_] were uninterpreted
∙ If UNSAT in EUF, then UNSAT in arrays too
∙ If SAT and solution satisfies array axioms, then SAT (lucky
case)

∙ If not, then refine by instantiating violated axioms

17



bit-vectors

Common approach:

1. Simplify/preprocess (heavily)
2. Encode to SAT (aka, bit blasting)
3. Send to a SAT solver

Alternatives [HBJ+14a, ZWR16] not yet mature

18



bit blasting

xi

yi

ci

XOR

XOR si

AND

AND

OR ci+1

Translation to CNF
∙ Each node a new variables
∙ XOR introduces 4 clauses
∙ AND introduces 3 clauses
∙ OR introduces 3 clauses
∙ 17 new clauses
∙ 5 new variables

19



bit blasting

xi

yi

ci

XOR

XOR si

AND

AND

OR ci+1

Translation to CNF
∙ Each node a new variables
∙ XOR introduces 4 clauses
∙ AND introduces 3 clauses
∙ OR introduces 3 clauses
∙ 17 new clauses
∙ 5 new variables

19

Bit-Blasting Addition/Multiplication

x[32] + y[32] 544 new clauses, 160 new
variables

x[32] × y[32] 10016 new clauses, 3008
new variables



difference logic

Language:

∙ Literals of the form
x− y ≤ k

with x and y variables (integer or real) and
k constant (integer or real)

∙ Reductions:
x− y = k −→ x− y ≤ k ∧ y− x ≤ k
x− y < k −→ x− y ≤ k− 1 (integers)
x− y < k −→ x− y ≤ k− δ (reals)

20



difference logic

∙ Any solution to a set of literals can be shifted:
∙ if v is a satisfying assignment, so is v′ = λx. v(x) + k

∙ We can use this to also process simple bounds x ≤ k:
∙ introduce fresh variable z (for zero),
∙ rewrite each x ≤ k to x− z ≤ k,
∙ given a solution v, shift it so that v′(z) = 0

∙ If we allow (dis)equalities as literals,
∙ in reals, satisfiability is polynomial
∙ in integers, satisfiability is NP-hard

Common approach: Cycle detection

21



difference logic: from literals to graph

1. Construct a graph from literals
2. Check if there is a negative path

Theorem Literals unsatisfiable⇔ ∃ negative path

Example

[ x ≤ 1, x− y ≤ 2, y− z ≤ 3, z− x ≤ −6 ]

Conflict Set:
x− y ≤ 2, y− z ≤ 3, z− x ≤ −6

22
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linear arithmetic

Language:

∙ Literals of the form a1x1 + · · ·+ anxn ▷◁ b
with a1 positive and ▷◁ ∈ {≤,≥}

∙ Reductions:
t = b −→ t ≤ b ∧ t ≥ b
t < b −→ t ≤ b− 1 (integer arith.)
t < b −→ t ≤ b− δ (real arith.)

Common approach: variant of Simplex designed for
SMT [DDM06b]

∙ Incremental
∙ Cheap backtracking
∙ Can do theory propagation
∙ Can generate minimal explanations
∙ Worst case exponential but fast in practice

23



linear real/rational arithmetic: simplex

Rewrite each
∑
aixi ▷◁ b as s ▷◁ b with s =

∑
aixi

We get tableau of equations + simple bounds on variables

∙ Tableau is fixed (modulo pivoting and substitutions)
∙ Bounds can be asserted and retracted

Tableau
s1 = a1,1 · x1 + · · ·+ a1,i · xj + · · ·+ a1,n · xn

...
si = ai,1 · x1 + · · ·+ ai,i · xj + · · ·+ ai,n · xn

...
sm = am,1 · x1 + · · ·+ am,i · xj + · · ·+ am,n · xn

Bounds
...

li ≤ si ≤ ui
...

lj ≤ xj ≤ uj
...

24



linear rational arithmetic: tableau

Tableau
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...

∙ lhs variables are basic, rhs variables are non-basic
∙ Keep an assignment v of all variables:
∙ v satisfies the tableau,
∙ v satisfies bounds on the non-basic variables

∙ Initially v(x) = 0 and −∞ ≤ x ≤ +∞
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Bounds
...

li ≤ si ≤ ui
...

lj ≤ xj ≤ uj
...

Case 1:
∙ v satisfies bound on the basic variables too
∙ Satisfiable, v is the model!
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∙ Unsatisfiable, the row is the explanation
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Tableau
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∙ v doesn’t satisfy bound on some si, and
some xj’s that si depends on has some slack

∙ Pivot, substitute, and continue
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linear rational arithmetic: example

-1 1 2 3 4 5 6

-1

1

2

3

4

[ 2y− x− 2 ≤ 0, −2y− x+ 4 ≤ 0 ]

Tableau

s1 = 2y− x
s2 = −2y− x

Bounds

−∞ ≤ x ≤ +∞
−∞ ≤ y ≤ +∞
−∞ ≤ s1 ≤ +∞
−∞ ≤ s2 ≤ +∞

Assignment

x 7→ 0
y 7→ 0
s1 7→ 0
s2 7→ 0
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s2’s bound violated

∙ There is slack in y
∙ Pivot s2 and y
∙ Update s2 value
∙ Update basic vars
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linear integer arithmetic

Classic NP-complete problem [Pap81]

Admits quantifier elimination [Coo72]

27



linear integer arithmetic

Common approach:

∙ Simplex + Branch-And-Bound [DDM06b, Gri12, Kin14]

∙ Use Simplex to solve real relaxation (treat variables as real)

∙ If UNSAT over reals, then UNSAT over integers too

∙ If SAT and solution v is integral, then SAT (lucky case)

∙ Otherwise, refine:
∙ Add branch-and-bound lemmas: x ≤ ⌊v(x)⌋ ∨ x ≥ ⌈v(x)⌉
∙ Add cutting plane lemmas: new implied inequality falsified by v

∙ Additionally solve integer equalities

∙ Not guaranteed to terminate
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∙ If SAT and solution v is integral, then SAT (lucky case)

∙ Otherwise, refine:
∙ Add branch-and-bound lemmas: x ≤ ⌊v(x)⌋ ∨ x ≥ ⌈v(x)⌉
∙ Add cutting plane lemmas: new implied inequality falsified by v

∙ Additionally solve integer equalities

∙ Not guaranteed to terminate

Alternatives [JdM13, BSW15] not yet mature
27



non-linear arithmetic

f(y, x) = am · xdm + am−1 · xdm−1 + · · ·+ a1 · xd1 + a0

f is in Z[y, x], ai are in Z[y]

Examples

f(x, y) = (x2 − 1)y2 + (x+ 1)y− 1 ∈ Z[x, y]
g(x) = 16x3 − 8x2 + x+ 16 ∈ Z[x]

Polynomial Constraints

f(x, y) > 0 ∧ g(x) < 0

28



cylindrical algebraic decomposition

p1 > 0 ∨ (p2 = 0 ∧ p3 < 0) p1,p2,p3 ∈ Z[x1, . . . , xn]

Projection (Saturation)

Project polynomials using a projection P

{p1,p2,p3} 7→ {p1,p2,p3,p4, . . . ,pn}

Lifting (Model construction)

For each variable xk
1. Isolate roots of pi(α, xk)
2. Choose a cell C and assign xk 7→ αk ∈ C, continue
3. If no more cells, backtrack

29



non-linear real arithmetic

Model Construction

Build partial model by assigning variables to values
[. . . , C1, C2, . . . , x 7→

√
2/2, . . .]

Unit Reasoning

Reason about unit constraints
C1 ≡ (x2 + y2 < 1) C2 ≡ (xy > 1)

Explain Conflicts

Explain conflicts using valid clausal reasons
C1 ∨ C2 ∨ x ≤ 0 ∨ x ≥ 1

30
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non-linear real arithmetic

x3 − 2x2 + 1 > 0

− 3x3 + 8x2 − 4x > 0
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non-linear real arithmetic

- 2 -1 0 1 2

C1︷ ︸︸ ︷
x2 + y2 < 1 ∧

C2︷ ︸︸ ︷
xy > 1

[]

Explanation C1 ∧ C2 ⇒ x ̸=
√
2/2
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Unit Constraint Reasoning

x2 + y2 < 1⇒ −
√
3/2 < y <

√
3/2

−2y− x+ 4 < 0⇒ y >
√
2
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CAD Projection

P = {x,−4+ 4x2, 1− x2 + x4}
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extending theory solvers to
qffs



satisfiability modulo a theory t

Def. A formula is (un)satisfiable in a theory T, or
T-(un)satisfiable, if there is a (no) model of T that satisfies it

Note: The T-satisfiability of quantifier-free formulas is
decidable iff the T-satisfiability of conjunctions/sets of literals
is decidable

(Convert the formula in DNF and check if any of its disjuncts is T-sat)

Problem: In practice, dealing with Boolean combinations of
literals is as hard as in propositional logic

Solution: Exploit propositional satisfiability technology
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lifting sat technology to smt

Two main approaches:

1. “Eager” [PRSS99, SSB02, SLB03, BGV01, BV02]

∙ translate into an equisatisfiable propositional formula
∙ feed it to any SAT solver

Notable systems: UCLID

2. “Lazy” [ACG00, dMR02, BDS02, ABC+02]

∙ abstract the input formula to a propositional one
∙ feed it to a (DPLL-based) SAT solver
∙ use a theory decision procedure to refine the formula and
guide the SAT solver

Notable systems: Barcelogic, Boolector, CVC4, MathSAT, Yices,
veriT, Z3
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We focus on the lazy approach



(very) lazy approach for smt – example

g(a) = c ∧ f(g(a)) ̸= f(c) ∨ g(a) = d ∧ c ̸= d

Theory T: Equality with Uninterpreted Functions

Simplest setting:

∙ Off-line SAT solver
∙ Non-incremental theory solver for conjunctions of equalities
and disequalities

∙ Theory atoms (e.g., g(a) = c) abstracted to propositional
atoms (e.g., 1)
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(very) lazy approach for smt – example

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) ̸= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c ̸= d︸ ︷︷ ︸
4

∙ Send {1, 2 ∨ 3, 4} to SAT solver.
∙ SAT solver returns model {1, 2, 4}.
Theory solver finds (concretization of) {1, 2, 4} unsat.

∙ Send {1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4} to SAT solver.
∙ SAT solver returns model {1, 3, 4}.
Theory solver finds {1, 3, 4} unsat.

∙ Send {1, 2 ∨ 3, 4, 1 ∨ 2, 1 ∨ 3 ∨ 4} to SAT solver.
∙ SAT solver finds {1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4, 1 ∨ 3 ∨ 4} unsat.

Done: the original formula is unsatisfiable in UF.
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lazy approach – enhancements

Several enhancements are possible to increase efficiency:

∙ Check T-satisfiability only of full propositional model

∙ Check T-satisfiability of partial assignment M as it grows

∙
∙ If M is T-unsatisfiable, identify a T-unsatisfiable subset M0 of
M and add ¬M0 as a clause

∙
∙ If M is T-unsatisfiable, backtrack to some point where the
assignment was still T-satisfiable
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lazy approach – main benefits

∙ Every tool does what it is good at:
∙ SAT solver takes care of Boolean information
∙ Theory solver takes care of theory information

∙ The theory solver works only with conjunctions of literals

∙ Modular approach:
∙ SAT and theory solvers communicate via a simple API [GHN+04]

∙ SMT for a new theory only requires new theory solver
∙ An off-the-shelf SAT solver can be embedded in a lazy SMT
system with few new lines of code (tens)
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an abstract framework for lazy smt

Several variants and enhancements of lazy SMT solvers exist

They can be modeled abstractly and declaratively as transition
systems

A transition system is a binary relation over states, induced by
a set of conditional transition rules

The framework can be first developed for SAT and then
extended to lazy SMT [NOT06, KG07]
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advantages of abstract framework

An abstract framework helps one:

∙ skip over implementation details and unimportant control
aspects

∙ reason formally about solvers for SAT and SMT
∙ model advanced features such as non-chronological
bactracking, lemma learning, theory propagation, …

∙ describe different strategies and prove their correctness
∙ compare different systems at a higher level
∙ get new insights for further enhancements

The one described next is a re-elaboration of those in
[NOT06, KG07]
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the original dpll procedure

∙ Modern SAT solvers are based on the DPLL
procedure [DP60, DLL62]

∙ DPLL tries to build incrementally a satisfying truth
assignment M for a CNF formula F

∙ M is grown by
∙ deducing the truth value of a literal from M and F, or
∙ guessing a truth value

∙ If a wrong guess for a literal leads to an inconsistency, the
procedure backtracks and tries the opposite value
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an abstract framework for dpll

States:

fail or ⟨M, F⟩

where

∙ M is a sequence of literals and decision points •
denoting a partial truth assignment

∙ F is a set of clauses denoting a CNF formula

Def. If M = M0 • M1 • · · · • Mn where each Mi contains no decision points

∙ Mi is decision level i of M

∙ M[i] def
= M0 • · · · • Mi
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an abstract framework for dpll

States:

fail or ⟨M, F⟩

Initial state:

∙ ⟨(), F0⟩, where F0 is to be checked for satisfiability

Expected final states:

∙ fail if F0 is unsatisfiable
∙ ⟨M,G⟩ otherwise, where
∙ G is equivalent to F0 and
∙ M satisfies G
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transition rules: notation

States treated like records:

∙ M denotes the truth assignment component of current state
∙ F denotes the formula component of current state

Transition rules in guarded assignment form [KG07]

p1 · · · pn
[M := e1] [F := e2]

updating M, F or both when premises p1, . . . ,pn all hold
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transition rules for the original dpll

Extending the assignment

Propagate
l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ∈ M l, l /∈ M

M := M l

Note: When convenient, treat M as a set

Note: Clauses are treated modulo ACI of ∨

Decide
l ∈ Lit(F) l, l /∈ M

M := M • l

Note: Lit(F) def
= {l | l literal of F} ∪ {l | l literal of F}
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transition rules for the original dpll

Repairing the assignment

Fail
l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M • /∈ M

fail

Backtrack

l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M M = M • l N • /∈ N
M := M l

Note: Last premise of Backtrack enforces chronological backtracking
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from dpll to cdcl solvers (1)

To model conflict-driven backjumping and learning, add to
states a third component C whose value is either no or a
conflict clause

States: fail or ⟨M, F, C⟩

Initial state:

∙ ⟨(), F0,no⟩, where F0 is to be checked for satisfiability

Expected final states:

∙ fail if F0 is unsatisfiable
∙ ⟨M,G,no⟩ otherwise, where
∙ G is equivalent to F0 and
∙ M satisfies G
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from dpll to cdcl solvers (2)

Replace Backtrack with

Conflict
C = no l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M

C := l1 ∨ · · · ∨ ln

Explain
C = l ∨ D l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ≺M l

C := l1 ∨ · · · ∨ ln ∨ D

Backjump
C = l1 ∨ · · · ∨ ln ∨ l lev l1, . . . , lev ln ≤ i < lev l

C := no M := M[i] l

Maintain invariant: F |=p C and M |=p ¬C when C ̸= no

Note: |=p denotes propositional entailment
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from dpll to cdcl solvers (3)

Modify Fail to

Fail
C ̸= no • /∈ M

fail
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execution example

F := {1, 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 1 ∨ 5 ∨ 7, 2 ∨ 5 ∨ 6 ∨ 7}

M F C rule
F no

1 F no by Propagate
1 2 F no by Propagate

1 2 • 3 F no by Decide
1 2 • 3 4 F no by Propagate

1 2 • 3 4 • 5 F no by Decide
1 2 • 3 4 • 5 6 F no by Propagate

1 2 • 3 4 • 5 6 7 F no by Propagate
1 2 • 3 4 • 5 6 7 F 2 ∨ 5 ∨ 6 ∨ 7 by Conflict
1 2 • 3 4 • 5 6 7 F 1 ∨ 2 ∨ 5 ∨ 6 by Explain with 1 ∨ 5 ∨ 7
1 2 • 3 4 • 5 6 7 F 1 ∨ 2 ∨ 5 by Explain with 5 ∨ 6

1 2 5 F no by Backjump
1 2 5 • 3 F no by Decide

· · ·
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from dpll to cdcl solvers (4)

Also add

Learn
F |=p C C /∈ F
F := F ∪ {C}

Forget
C = no F = G ∪ {C} G |=p C

F := G

Restart
M := M[0] C := no

Note: Learn can be applied to any clause stored in C when C ̸= no
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modeling modern sat solvers

At the core, current CDCL SAT solvers are implementations of
the transition system with rules

Propagate, Decide,

Conflict, Explain, Backjump,

Learn, Forget, Restart

Basic DPLL def
=

{ Propagate, Decide, Conflict, Explain, Backjump }

DPLL def
= Basic DPLL + { Learn, Forget, Restart }
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the basic dpll system – correctness

Some terminology:

Irreducible state: state for which no Basic DPLL rules apply

Execution: sequence of transitions allowed by the rules and
starting with M = ∅ and C = no

Exhausted execution: execution ending in an irreducible state

Proposition (Soundness) For every exhausted execution
starting with F = F0 and ending with fail, the clause set F0 is
unsatisfiable.

Proposition (Completeness) For every exhausted execution
starting with F = F0 and ending with C = no, the clause set F0
is satisfied by M.
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Execution: sequence of transitions allowed by the rules and
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Exhausted execution: execution ending in an irreducible state

Proposition (Strong Termination) Every execution in Basic DPLL
is finite.

Note: This is not so immediate, because of Backjump.
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Exhausted execution: execution ending in an irreducible state

Proposition (Strong Termination) Every execution in Basic DPLL
is finite.

Lemma Every exhausted execution ends with either C = no or
fail.
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Some terminology:
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the dpll system – strategies

∙ Applying
∙ one Basic DPLL rule between each two Learn applications and
∙ Restart less and less often
ensures termination

∙ A common basic strategy applies the rules with the following
priorities:

1. If n > 0 conflicts have been found so far,
increase n and apply Restart

2. If a clause is falsified by M, apply Conflict
3. Keep applying Explain until Backjump is applicable
4. Apply Learn
5. Apply Backjump
6. Apply Propagate to completion
7. Apply Decide
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from sat to smt

Same states and transitions but

∙ F contains quantifier-free clauses in some theory T

∙ M is a sequence of theory literals and decision points

∙ the DPLL system is augmented with rules

T-Conflict, T-Propagate, T-Explain

∙ maintains invariant: F |=T C and M |=p ¬C when C ̸= no

Def. F |=T G iff every model of T that satisfies F satisfies G as
well
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smt-level rules

Fix a theory T

T-Conflict
C = no l1, . . . , ln ∈ M l1, . . . , ln |=T ⊥

C := l1 ∨ · · · ∨ ln

T-Propagate
l ∈ Lit(F) M |=T l l, l /∈ M

M := M l

T-Explain
C = l ∨ D l1, . . . , ln |=T l l1, . . . , ln ≺M l

C := l1 ∨ · · · ∨ ln ∨ D

Note: ⊥ = empty clause

Note: |=T decided by theory solver
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modeling the very lazy theory approach

T-Conflict is enough to model the naive integration of SAT
solvers and theory solvers seen in the earlier UF example

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) ̸= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c ̸= d︸ ︷︷ ︸
4

M F C rule
1, 2 ∨ 3, 4 no

1 4 1, 2 ∨ 3, 4 no by Propagate+
1 4 • 2 1, 2 ∨ 3, 4 no by Decide
1 4 • 2 1, 2 ∨ 3, 4 1 ∨ 2 ∨ 4 by T-Conflict
1 4 • 2 , 1 ∨ 2 ∨ 4 1 ∨ 2 ∨ 4 by Learn

1 4 , 1 ∨ 2 ∨ 4 no by Restart
1 4 2 3 , 1 ∨ 2 ∨ 4 no by Propagate+
1 4 2 3 , 1 ∨ 2 ∨ 4, 1 ∨ 3 ∨ 4 1 ∨ 3 ∨ 4 by T-Conflict, Learn
fail by Fail
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a better lazy approach

The very lazy approach can be improved considerably with

∙ An on-line SAT engine,
which can accept new input clauses on the fly

∙ an incremental and explicating T-solver,
which can

1. check the T-satisfiability of M as it is extended and
2. identify a small T-unsatisfiable subset of M once M becomes
T-unsatisfiable
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lazy approach – strategies

Ignoring Restart (for simplicity), a common strategy is to apply
the rules using the following priorities:

1. If a clause is falsified by the current assignment M,
apply Conflict

2. If M is T-unsatisfiable, apply T-Conflict
3. Apply Fail or Explain+Learn+Backjump as appropriate
4. Apply Propagate
5. Apply Decide

Note: Depending on the cost of checking the T-satisfiability of M,
Step (2) can be applied with lower frequency or priority
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theory propagation

With T-Conflict as the only theory rule, the theory solver is
used just to validate the choices of the SAT engine

With T-Propagate and T-Explain, it can also be used to guide
the engine’s search [Tin02]

T-Propagate
l ∈ Lit(F) M |=T l l, l /∈ M

M := M l

T-Explain
C = l ∨ D l1, . . . , ln |=T l l1, . . . , ln ≺M l

C := l1 ∨ · · · ∨ ln ∨ D
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theory propagation example

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) ̸= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c ̸= d︸ ︷︷ ︸
4

M F C rule
1, 2 ∨ 3, 4 no

1 4 1, 2 ∨ 3, 4 no by Propagate+
1 4 2 1, 2 ∨ 3, 4 no by T-Propagate (1 |=T 2)

1 4 2 3 1, 2 ∨ 3, 4 no by T-Propagate (1, 4 |=T 3)
1 4 2 3 1, 2 ∨ 3, 4 2 ∨ 3 by Conflict
fail by Fail

Note: T-propagation eliminates search altogether in this case
no applications of Decide are needed
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modeling modern lazy smt solvers

At the core, current lazy SMT solvers are implementations of
the transition system with rules

(1) Propagate, Decide, Conflict, Explain, Backjump, Fail

(2) T-Conflict, T-Propagate, T-Explain

(3) Learn, Forget, Restart

Basic DPLL Modulo Theories def
= (1) + (2)

DPLL Modulo Theories def
= (1) + (2) + (3)
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correctness

Updated terminology:

Irreducible state: state to which no Basic DPLL MT rules apply

Execution: sequence of transitions allowed by the rules and
starting with M = ∅ and C = no

Exhausted execution: execution ending in an irreducible state

Proposition (Soundness) For every exhausted execution
starting with F = F0 and ending with fail, the clause set F0 is
T-unsatisfiable.

Proposition (Completeness) For every exhausted execution
starting with F = F0 and ending with C = no, F0 is T-satisfiable;
specifically, M is T-satisfiable and M |=p F0.
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Proposition (Termination) Every execution in which
(a) Learn/Forget are applied only finitely many times and
(b) Restart is applied with increased periodicity
is finite.
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dpll(t) architecture

The approach formalized so far can be implemented with a
simple architecture named DPLL(T) [GHN+04, NOT06]

DPLL(T) = DPLL(X) engine + T-solver
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simple architecture named DPLL(T) [GHN+04, NOT06]

DPLL(T) = DPLL(X) engine + T-solver

DPLL(X):

∙ Very similar to a SAT solver, enumerates Boolean models
∙ Not allowed: pure literal, blocked literal detection, ...
∙ Required: incremental addition of clauses
∙ Desirable: partial model detection
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dpll(t) architecture

The approach formalized so far can be implemented with a
simple architecture named DPLL(T) [GHN+04, NOT06]

DPLL(T) = DPLL(X) engine + T-solver

T-solver:

∙ Checks the T-satisfiability of conjunctions of literals
∙ Computes theory propagations
∙ Produces explanations of T-unsatisfiability/propagation
∙ Must be incremental and backtrackable
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reasoning by cases in theory solvers

For certain theories, determining that a set M is T-unsatisfiable
requires reasoning by cases.

Example: T = the theory of arrays.

M = { r(w(a, i, x), j) ̸= x︸ ︷︷ ︸
1

, r(w(a, i, x), j) ̸= r(a, j)︸ ︷︷ ︸
2

}

i = j) Then, r(w(a, i, x), j) = x. Contradiction with 1.

i ̸= j) Then, r(w(a, i, x), j) = r(a, j). Contradiction with 2.

Conclusion: M is T-unsatisfiable
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case splitting

A complete T-solver reasons by cases via (internal) case
splitting and backtracking mechanisms

An alternative is to lift case splitting and backtracking from the
T-solver to the SAT engine

Basic idea: encode case splits as sets of clauses and send
them as needed to the SAT engine for it to split on
them [BNOT06]

Possible benefits:

∙ All case-splitting is coordinated by the SAT engine
∙ Only have to implement case-splitting infrastructure in one
place

∙ Can learn a wider class of lemmas
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splitting on demand

Basic idea: encode case splits as a set of clauses and send
them as needed to the SAT engine for it to split on them

Basic Scenario:

M = {. . . , s = r(w(a, i, t), j)︸ ︷︷ ︸
s′

, . . .}

∙ Main SMT module: “Is M T-unsatisfiable?”

∙ T-solver: “I do not know yet, but it will help me if you
consider these theory lemmas:

s = s′ ∧ i = j⇒ s = t, s = s′ ∧ i ̸= j⇒ s = r(a, j) ”

69



splitting on demand

Basic idea: encode case splits as a set of clauses and send
them as needed to the SAT engine for it to split on them

Basic Scenario:

M = {. . . , s = r(w(a, i, t), j)︸ ︷︷ ︸
s′

, . . .}

∙ Main SMT module: “Is M T-unsatisfiable?”

∙ T-solver: “I do not know yet, but it will help me if you
consider these theory lemmas:

s = s′ ∧ i = j⇒ s = t, s = s′ ∧ i ̸= j⇒ s = r(a, j) ”

69



splitting on demand

Basic idea: encode case splits as a set of clauses and send
them as needed to the SAT engine for it to split on them

Basic Scenario:

M = {. . . , s = r(w(a, i, t), j)︸ ︷︷ ︸
s′

, . . .}

∙ Main SMT module: “Is M T-unsatisfiable?”

∙ T-solver: “I do not know yet, but it will help me if you
consider these theory lemmas:

s = s′ ∧ i = j⇒ s = t, s = s′ ∧ i ̸= j⇒ s = r(a, j) ”

69



modeling splitting on demand

To model the generation of theory lemmas for case splits, add
the rule

T-Learn

|=T ∃v(l1 ∨ · · · ∨ ln) l1, . . . , ln ∈ LS v vars not in F
F := F ∪ {l1 ∨ · · · ∨ ln}

where LS is a finite set of literals dependent on the initial set
of clauses (see [BNOT06] for a formal definition of LS)

Note: For many theories with a theory solver, there exists
an appropriate finite LS for every input F
The set LS does not need to be computed explicitly
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modeling splitting on demand

Now we can relax the requirement on the theory solver:

When M |=p F, it must either

∙ determine whether M |=T ⊥ or
∙ generate a new clause by T-Learn containing
at least one literal of LS undefined in M

The T-solver is required to determine whether M |=T ⊥ only if
all literals in LS are defined in M

Note: In practice, to determine if M |=T ⊥, the T-solver only needs
a small subset of LS to be defined in M
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example — theory of finite sets

F : x = y ∪ z ∧ y ̸= ∅ ∨ x ̸= z

M F rule
x = y ∪ z F by Propagate+

x = y ∪ z • y = ∅ F by Decide
x = y ∪ z • y = ∅ x ̸= z F by Propagate
x = y ∪ z • y = ∅ x ̸= z F, (x = z ∨ e ∈ x ∨ e ∈ z), by T-Learn

F,

(x = z ∨ e ̸∈ x ∨ e ̸∈ z)
x = y ∪ z • y = ∅ x ̸= z • e ∈ x F, (x = z ∨ e ∈ x ∨ e ∈ z), by Decide

F,

(x = z ∨ e ̸∈ x ∨ e ̸∈ z)
x = y ∪ z • y = ∅ x ̸= z • e ∈ x e /∈ z F, (x = z ∨ e ∈ x ∨ e ∈ z), by Propagate

F,

(x = z ∨ e ̸∈ x ∨ e ̸∈ z)

T-solver can make the following deductions at this point:

e ∈ x · · · ⇒ e ∈ y ∪ z · · · ⇒ e ∈ y · · · ⇒ e ∈ ∅ ⇒ ⊥

This enables an application of T-Conflict with clause

x ̸= y ∪ z ∨ y ̸= ∅ ∨ x = z ∨ e /∈ x ∨ e ∈ z
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correctness results

Correctness results can be extended to the new rule.

Soundness: The new T-Learn rule maintains satisfiability of
the clause set.

Completeness: As long as the theory solver can decide M |=T ⊥
when all literals in LS are determined, the system is still
complete.

Termination: The system terminates under the same
conditions as before. Roughly:

∙ Any lemma is (re)learned only finitely many times
∙ Restart is applied with increased periodicity
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combining theories and their
solvers



need for combining theories and solvers

Many applications give rise to mixed-theory formulas like:

a ≈ b+ 2 ∧ A = store(B,a+ 1, 4) ∧
A[b+ 3] = 2 ∨ f(a− 1) ̸= f(b+ 1)

Solving that formula requires reasoning over

∙ the theory of linear arithmetic (TLA)
∙ the theory of arrays (TA)
∙ the theory of uninterpreted functions (TUF)

Question: Given solvers for each theory, can we combine them
modularly into one for TLA ∪ TA ∪ TUF?

Under certain conditions, we can do it with the Nelson-Oppen
combination method [NO79, Opp80]
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motivating example (convex case)

Consider the following set of literals over TLRA ∪ TUF
(TLRA, linear real arithmetic):

f(f(x)− f(y)) = a
f(0) > a+ 2
x = y

First step: purify literals so that each belongs to a single
theory
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motivating example (convex case)

Consider the following set of literals over TLRA ∪ TUF
(TLRA, linear real arithmetic):

f(f(x)− f(y)) = a
f(0) > a+ 2
x = y

First step: purify literals so that each belongs to a single
theory

f(f(x)− f(y)) = a =⇒ f(e1) = a =⇒ f(e1) = a
e1 = f(x)− f(y) e1 = e2 − e3

e2 = f(x)
e3 = f(y)
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motivating example (convex case)

Consider the following set of literals over TLRA ∪ TUF
(TLRA, linear real arithmetic):

f(f(x)− f(y)) = a
f(0) > a+ 2
x = y

First step: purify literals so that each belongs to a single
theory

f(0) > a+ 2 =⇒ f(e4) > a+ 2 =⇒ f(e4) = e5
e4 = 0 e4 = 0

e5 > a+ 2
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motivating example (convex case)

Second step: exchange entailed interface equalities, equalities
over shared constants e1, e2, e3, e4, e5,a

L1 L2
f(e1) = a e2 − e3 = e1
f(x) = e2 e4 = 0
f(y) = e3 e5 > a+ 2
f(e4) = e5

e2 = e3

x = y

a = e5
e1 = e4

L1 |=UF e2 = e3 L2 |=LRA e1 = e4
L1 |=UF a = e5 Third step: check for

satisfiability locally

L1 ̸|=UF ⊥
L2 |=LRA ⊥

Report unsatisfiable
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motivating example (non-convex case)

Consider the following unsatisfiable set of literals over
TLIA ∪ TUF (TLIA, linear integer arithmetic):

1 ≤ x ≤ 2
f(1) = a
f(2) = f(1) + 3
a = b+ 2

First step: purify literals so that each belongs to a single
theory
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motivating example (non-convex case)

Consider the following unsatisfiable set of literals over
TLIA ∪ TUF (TLIA, linear integer arithmetic):

1 ≤ x ≤ 2
f(1) = a
f(2) = f(1) + 3
a = b+ 2

First step: purify literals so that each belongs to a single
theory

f(1) = a =⇒ f(e1) = a
e1 = 1
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motivating example (non-convex case)

Consider the following unsatisfiable set of literals over
TLIA ∪ TUF (TLIA, linear integer arithmetic):

1 ≤ x ≤ 2
f(1) = a
f(2) = f(1) + 3
a = b+ 2

First step: purify literals so that each belongs to a single
theory

f(2) = f(1) + 3 =⇒ e2 = 2
f(e2) = e3
f(e1) = e4
e3 = e4 + 3

78



motivating example (non-convex case)

Second step: exchange entailed interface equalities over
shared constants x, e1,a,b, e2, e3, e4

L1 L2
1 ≤ x f(e1) = a
x ≤ 2 f(x) = b
e1 = 1 f(e2) = e3
a = b+ 2 f(e1) = e4
e2 = 2

x = e1

e3 = e4 + 3
a = e4

x = e1
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motivating example (non-convex case)

Second step: exchange entailed interface equalities over
shared constants x, e1,a,b, e2, e3, e4

L1 L2
1 ≤ x f(e1) = a
x ≤ 2 f(x) = b
e1 = 1 f(e2) = e3
a = b+ 2 f(e1) = e4
e2 = 2

x = e1

e3 = e4 + 3
a = e4

x = e1

No more entailed equalities, but L1 |=LIA x = e1 ∨ x = e2
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motivating example (non-convex case)

Second step: exchange entailed interface equalities over
shared constants x, e1,a,b, e2, e3, e4

L1 L2
1 ≤ x f(e1) = a
x ≤ 2 f(x) = b
e1 = 1 f(e2) = e3
a = b+ 2 f(e1) = e4
e2 = 2

x = e1

e3 = e4 + 3
a = e4

x = e1

Consider each case of x = e1 ∨ x = e2 separately
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motivating example (non-convex case)

Second step: exchange entailed interface equalities over
shared constants x, e1,a,b, e2, e3, e4

L1 L2
1 ≤ x f(e1) = a
x ≤ 2 f(x) = b
e1 = 1 f(e2) = e3
a = b+ 2 f(e1) = e4
e2 = 2

x = e1

e3 = e4 + 3
a = e4

x = e1

Case 1) x = e1
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Second step: exchange entailed interface equalities over
shared constants x, e1,a,b, e2, e3, e4

L1 L2
1 ≤ x f(e1) = a
x ≤ 2 f(x) = b
e1 = 1 f(e2) = e3
a = b+ 2 f(e1) = e4
e2 = 2 x = e1
e3 = e4 + 3
a = e4
x = e1
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motivating example (non-convex case)

Second step: exchange entailed interface equalities over
shared constants x, e1,a,b, e2, e3, e4

L1 L2
1 ≤ x f(e1) = a
x ≤ 2 f(x) = b
e1 = 1 f(e2) = e3
a = b+ 2 f(e1) = e4
e2 = 2 x = e1
e3 = e4 + 3
a = e4
x = e1

L2 |=UF a = b, which entails ⊥ when sent to L1
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motivating example (non-convex case)

Second step: exchange entailed interface equalities over
shared constants x, e1,a,b, e2, e3, e4

L1 L2
1 ≤ x f(e1) = a
x ≤ 2 f(x) = b
e1 = 1 f(e2) = e3
a = b+ 2 f(e1) = e4
e2 = 2

x = e2

e3 = e4 + 3
a = e4

x = e2
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motivating example (non-convex case)

Second step: exchange entailed interface equalities over
shared constants x, e1,a,b, e2, e3, e4

L1 L2
1 ≤ x f(e1) = a
x ≤ 2 f(x) = b
e1 = 1 f(e2) = e3
a = b+ 2 f(e1) = e4
e2 = 2

x = e2

e3 = e4 + 3
a = e4

x = e2

Case 2) x = e2
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motivating example (non-convex case)

Second step: exchange entailed interface equalities over
shared constants x, e1,a,b, e2, e3, e4

L1 L2
1 ≤ x f(e1) = a
x ≤ 2 f(x) = b
e1 = 1 f(e2) = e3
a = b+ 2 f(e1) = e4
e2 = 2 x = e2
e3 = e4 + 3
a = e4
x = e2

80



motivating example (non-convex case)

Second step: exchange entailed interface equalities over
shared constants x, e1,a,b, e2, e3, e4

L1 L2
1 ≤ x f(e1) = a
x ≤ 2 f(x) = b
e1 = 1 f(e2) = e3
a = b+ 2 f(e1) = e4
e2 = 2 x = e2
e3 = e4 + 3
a = e4
x = e2

L2 |=UF e3 = b, which entails ⊥ when sent to L1
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the nelson-oppen method

∙ For i = 1, 2, let Ti be a first-order theory of signature Σi (set of
function and predicate symbols in Ti other than =)

∙ Let T = T1 ∪ T2
∙ Let C be a finite set of free constants (i.e., not in Σ1 ∪ Σ2)

We consider only input problems of the form

L1 ∪ L2

where each Li is a finite set of ground (i.e., variable-free)
(Σi ∪ C)-literals

Note: Because of purification, there is no loss of generality
in considering only ground (Σi ∪ C)-literals
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the nelson-oppen method

Bare-bones, non-deterministic, non-incremental version
[Opp80, Rin96, TH96]:

Input: L1 ∪ L2 with Li finite set of ground (Σi ∪ C)-literals
Output: sat or unsat

1. Guess an arrangement A, i.e., a set of equalities and
disequalities over C such that

c = d ∈ A or c ̸= d ∈ A for all c,d ∈ C

2. If Li ∪ A is Ti-unsatisfiable for i = 1 or i = 2, return unsat

3. Otherwise, return sat
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correctness of the no method

Proposition (Termination) The method is terminating.

(Trivially, because there is only a finite number of arrangements to
guess)

Proposition (Soundness) If the method returns unsat for every
arrangement, the input is (T1 ∪ T2)-unsatisfiable.

(Because satisfiability in (T1 ∪ T2) is always preserved)

Proposition (Completeness) If Σ1 ∩ Σ2 = ∅ and T1 and T2 are
stably infinite, when the method returns sat for some
arrangement, the input is (T1 ∪ T2)-is satisfiable.
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stably infinite theories

Def. A theory T is stably infinite iff every quantifier-free
T-satisfiable formula is satisfiable in an infinite model of T

Many interesting theories are stably infinite:

∙ Theories of an infinite structure (e.g., integer arithmetic)
∙ Complete theories with an infinite model (e.g., theory of dense
linear orders, theory of lists)

∙ Convex theories (e.g., EUF, linear real arithmetic)

Def. A theory T is convex iff, for any set L of literals
L |=T s1 = t1 ∨ · · · ∨ sn = tn =⇒ L |=T si = ti for some i

Note: With convex theories, arrangements do not need to be guessed,
theycan be computed by (theory) propagation
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stably infinite theories

Def. A theory T is stably infinite iff every quantifier-free
T-satisfiable formula is satisfiable in an infinite model of T

Other interesting theories are not stably infinite:

∙ Theories of a finite structure (e.g., theory of bit vectors of finite
size, arithmetic modulo n)

∙ Theories with models of bounded cardinality (e.g., theory of
strings of bounded length)

∙ Some equational/Horn theories

The Nelson-Oppen method has been extended to some
classes of non-stably infinite theories [TZ05, RRZ05, JB10]
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smt solving with multiple theories

Let T1, . . . , Tn be theories with respective solvers S1, . . . , Sn

How can we integrate all of them cooperatively into a single
SMT solver for T = T1 ∪ · · · ∪ Tn?
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smt solving with multiple theories

Let T1, . . . , Tn be theories with respective solvers S1, . . . , Sn

How can we integrate all of them cooperatively into a single
SMT solver for T = T1 ∪ · · · ∪ Tn?

Quick Solution:

1. Combine S1, . . . , Sn with Nelson-Oppen into a theory solver
for T

2. Build a DPLL(T) solver as usual
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smt solving with multiple theories

Let T1, . . . , Tn be theories with respective solvers S1, . . . , Sn

How can we integrate all of them cooperatively into a single
SMT solver for T = T1 ∪ · · · ∪ Tn?

Better Solution [Bar02, BBC+05b, BNOT06]:

1. Extend DPLL(T) to DPLL(T1, . . . , Tn)

2. Lift Nelson-Oppen to the DPLL(X1, . . . , Xn) level

3. Build a DPLL(T1, . . . , Tn) solver

86



modeling dpll(t1, . . . , tn) abstractly

∙ Let n = 2, for simplicity

∙ Let Ti be of signature Σi for i = 1, 2, with Σ1 ∩ Σ2 = ∅

∙ Let C be a set of free constants

∙ Assume wlog that each input literal has signature (Σ1 ∪ C) or
(Σ2 ∪ C) (no mixed literals)

∙ Let M|i
def
= {(Σi ∪ C)-literals of M and their complement}

∙ Let I(M) def
= {c = d | c,d occur in C, M|1 and M|2} ∪

{c ̸= d | c,d occur in C, M|1 and M|2}
(interface literals)
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abstract dpll modulo multiple theories

Propagate, Conflict, Explain, Backjump, Fail (unchanged)

Decide
l ∈ Lit(F) ∪ I(M) l, l /∈ M

M := M • l

Only change: decide on interface equalities as well

T-Propagate
l ∈ Lit(F) ∪ I(M) i ∈ {1, 2} M |=Ti l l, l /∈ M

M := M l

Only change: propagate interface equalities as well, but
reason locally in each Ti
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abstract dpll modulo multiple theories

T-Conflict
C = no l1, . . . , ln ∈ M l1, . . . , ln |=Ti ⊥ i ∈ {1, 2}

C := l1 ∨ · · · ∨ ln
T-Explain

C = l ∨ D l1, . . . , ln |=Ti l i ∈ {1, 2} l1, . . . , ln ≺M l
C := l1 ∨ · · · ∨ ln ∨ D

Only change: reason locally in each Ti

I-Learn
|=Ti l1 ∨ · · · ∨ ln l1, . . . , ln ∈ M|i ∪ I(M) i ∈ {1, 2}

F := F ∪ {l1 ∨ · · · ∨ ln}

New rule: for entailed disjunctions of interface literals
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example — convex theories

F :=

0︷ ︸︸ ︷
f(e1) = a ∧

1︷ ︸︸ ︷
f(x) = e2 ∧

2︷ ︸︸ ︷
f(y) = e3 ∧

3︷ ︸︸ ︷
f(e4) = e5 ∧

4︷ ︸︸ ︷
x = y ∧

e2 − e3 = e1︸ ︷︷ ︸
5

∧ e4 = 0︸ ︷︷ ︸
6

∧ e5 > a+ 2︸ ︷︷ ︸
7

e2 = e3︸ ︷︷ ︸
8

e1 = e4︸ ︷︷ ︸
9

a = e5︸ ︷︷ ︸
10

M F C rule
F no

0 1 2 3 4 5 6 7 F no by Propagate+
0 1 2 3 4 5 6 7 8 F no by T-Propagate (1, 2, 4 |=UF 8)

0 1 2 3 4 5 6 7 8 9 F no by T-Propagate (5, 6, 8 |=LRA 9)
0 1 2 3 4 5 6 7 8 9 10 F no by T-Propagate (0, 3, 9 |=UF 10)
0 1 2 3 4 5 6 7 8 9 10 F 7 ∨ 10 by T-Conflict (7, 10 |=LRA ⊥)

fail by Fail
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example — non-convex theories

F :=

0︷ ︸︸ ︷
f(e1) = a ∧

1︷ ︸︸ ︷
f(x) = b ∧

2︷ ︸︸ ︷
f(e2) = e3 ∧

3︷ ︸︸ ︷
f(e1) = e4 ∧

1 ≤ x︸ ︷︷ ︸
4

∧ x ≤ 2︸ ︷︷ ︸
5

∧ e1 = 1︸ ︷︷ ︸
6

∧ a = b+ 2︸ ︷︷ ︸
7

∧ e2 = 2︸ ︷︷ ︸
8

∧ e3 = e4 + 3︸ ︷︷ ︸
9

a = e4︸ ︷︷ ︸
10

x = e1︸ ︷︷ ︸
11

x = e2︸ ︷︷ ︸
12

a = b︸ ︷︷ ︸
13

M F C rule
F no

0 · · · 9 F no by Propagate+
0 · · · 9 10 F no by T-Propagate (0, 3 |=UF 10)
0 · · · 9 10 F, 4 ∨ 5 ∨ 11 ∨ 12 no by I-Learn (|=LIA 4 ∨ 5 ∨ 11 ∨ 12)

0 · · · 9 10 • 11 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Decide
0 · · · 9 10 • 11 13 F, 4 ∨ 5 ∨ 11 ∨ 12 no by T-Propagate (0, 1, 11 |=UF 13)
0 · · · 9 10 • 11 13 F, 4 ∨ 5 ∨ 11 ∨ 12 7 ∨ 13 by T-Conflict (7, 13 |=UF ⊥)

0 · · · 9 10 13 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Backjump
0 · · · 9 10 13 11 F, 4 ∨ 5 ∨ 11 ∨ 12 no by T-Propagate (0, 1, 13 |=UF 11)

0 · · · 9 10 13 11 12 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Propagate
. . . (exercise)
fail · · · · · · by Fail
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