
foundations of satisfiability modulo
theories
SC2 Summer School

Cesare Tinelli
July 31, 2017

The University of Iowa

acknowledgments

Many thanks to

∙ Clark Barrett
∙ Dejan Jovanovic
∙ Albert Oliveras

for contributing some of the material used in these slides.

Disclamer: The literature on SMT and its applications is vast.
The bibliographic references provided here are just a sample.
Apologies to all authors whose work is not cited.

1

introduction

introduction

Historically, automated reasoning ≡ uniform proof-search
procedures for First Order Logic

Limited success: is FOL the best compromise between
expressivity and efficiency?

Most recently R&D has focused on:

∙ addressing mostly (expressive enough) decidable fragments
of a certain logic

∙ incorporating domain-specific reasoning, e.g on:
∙ arithmetic reasoning
∙ equality
∙ data structures (arrays, lists, stacks, ...)

3

introduction

Historically, automated reasoning ≡ uniform proof-search
procedures for First Order Logic

Limited success: is FOL the best compromise between
expressivity and efficiency?

Most recently R&D has focused on:

∙ addressing mostly (expressive enough) decidable fragments
of a certain logic

∙ incorporating domain-specific reasoning, e.g on:
∙ arithmetic reasoning
∙ equality
∙ data structures (arrays, lists, stacks, ...)

3

introduction

Historically, automated reasoning ≡ uniform proof-search
procedures for First Order Logic

Limited success: is FOL the best compromise between
expressivity and efficiency?

Most recently R&D has focused on:

∙ addressing mostly (expressive enough) decidable fragments
of a certain logic

∙ incorporating domain-specific reasoning, e.g on:
∙ arithmetic reasoning
∙ equality
∙ data structures (arrays, lists, stacks, ...)

3

introduction

Examples of this trend:

SAT: propositional formalization, Boolean reasoning
+ high degree of efficiency
− expressive (all NP-complete problems) but
involved encodings

SMT: first-order formalization, Boolean +
domain-specific reasoning
+ improves expressivity and scalability
− some (but acceptable) loss of efficiency

These lectures: an overview of SMT and its formal foundations

4

introduction

Examples of this trend:

SAT: propositional formalization, Boolean reasoning
+ high degree of efficiency
− expressive (all NP-complete problems) but
involved encodings

SMT: first-order formalization, Boolean +
domain-specific reasoning
+ improves expressivity and scalability
− some (but acceptable) loss of efficiency

These lectures: an overview of SMT and its formal foundations

4

the smt problem

Some problems are more naturally expressed in logics other
than propositional logic, e.g:

∙ Software verification needs reasoning about equality, arithmetic,
data structures, …

SMT is about deciding the satisfiability of a (usually quantifier-
free) FOL formula with respect to some background theory

∙ Example (Equality with Uninterpreted Functions):

g(a) = c ∧ (f(g(a)) ̸= f(c) ∨ g(a) = d) ∧ c ̸= d

Wide range of applications: Extended Static Checking [FLL+02],
Predicate abstraction [LNO06], Model checking [AMP06, HT08],
Scheduling [BNO+08b], Test generation [TdH08], …

5

smt solvers

SAT Solver
DPLL

Core

Bit-Vectors

ArraysArithmetic

UF

assertions

explanations
conflicts
lemmas
propagations

6

smt solvers

SAT Solver
DPLL

Core

Bit-Vectors

ArraysArithmetic

UF

assertions

explanations
conflicts
lemmas
propagations

6

SAT Solver

∙ Only sees Boolean skeleton of
problem

∙ Builds partial model by
assigning truth values to literals

∙ Sends these literals to the core
as assertions

smt solvers

SAT Solver
DPLL

Core

Bit-Vectors

ArraysArithmetic

UF

assertions

explanations
conflicts
lemmas
propagations

6

Core

∙ Sends each assertion to the
appropriate theory

∙ Sends deduced literals to other
theories/SAT solver

∙ Handles theory combination

smt solvers

SAT Solver
DPLL

Core

Bit-Vectors

ArraysArithmetic

UF

assertions

explanations
conflicts
lemmas
propagations

6

Theory Solvers

∙ Decide T-satisfiability of a
conjunction of theory literals

∙ Incremental
∙ Backtrackable
∙ Conflict Generation
∙ Theory Propagation

theories

theories of interest: euf

Equality (=) with Uninterpreted Functions [NO80, BD94, NO07a]

Typically used to abstract unsupported constructs, e.g.:

∙ non-linear multiplication in arithmetic
∙ ALUs in circuits

Example: The formula

a ∗ (|b|+ c) = d ∧ b ∗ (|a|+ c) ̸= d ∧ a = b

is unsatisfiable, but no arithmetic reasoning is needed

If we abstract it to

mul(a, add(abs(b), c)) = d ∧ mul(b, add(abs(a), c)) ̸= d ∧ a = b

it is still unsatisfiable

8

theories of interest: euf

Equality (=) with Uninterpreted Functions [NO80, BD94, NO07a]

Typically used to abstract unsupported constructs, e.g.:

∙ non-linear multiplication in arithmetic
∙ ALUs in circuits

Example: The formula

a ∗ (|b|+ c) = d ∧ b ∗ (|a|+ c) ̸= d ∧ a = b

is unsatisfiable, but no arithmetic reasoning is needed

If we abstract it to

mul(a, add(abs(b), c)) = d ∧ mul(b, add(abs(a), c)) ̸= d ∧ a = b

it is still unsatisfiable

8

theories of interest: euf

Equality (=) with Uninterpreted Functions [NO80, BD94, NO07a]

Typically used to abstract unsupported constructs, e.g.:

∙ non-linear multiplication in arithmetic
∙ ALUs in circuits

Example: The formula

a ∗ (|b|+ c) = d ∧ b ∗ (|a|+ c) ̸= d ∧ a = b

is unsatisfiable, but no arithmetic reasoning is needed

If we abstract it to

mul(a, add(abs(b), c)) = d ∧ mul(b, add(abs(a), c)) ̸= d ∧ a = b

it is still unsatisfiable
8

theories of interest: arithmetic

Very useful, for obvious reasons

Restricted fragments (over the reals or the integers) support
more efficient methods:

∙ Bounds: x ▷◁ k with ▷◁ ∈ {<, >, ≤, ≥, =} [BBC+05a]

∙ Difference logic: x− y ▷◁ k, with
▷◁ ∈ {<, >, ≤, ≥, =} [NO05, WIGG05, CM06]

∙ UTVPI: ±x± y ▷◁ k, with ▷◁ ∈ {<, >, ≤, ≥, =} [LM05]

∙ Linear arithmetic, e.g: 2x− 3y+ 4z ≤ 5 [DdM06a]

∙ Non-linear arithmetic, e.g:
2xy+ 4xz2 − 5y ≤ 10 [BLNM+09, ZM10, JdM12]

9

theories of interest: arrays

Used in software verification and hardware verification (for
memories) [SBDL01, BNO+08a, dMB09a]

Two interpreted function symbols _[_] and store

Axiomatized by:

∙ ∀a ∀i∀v. store(a, i, v)[i] = v
∙ ∀a ∀i∀j∀v. i ̸= j⇒ store(a, i, v)[j] = a[j])

Sometimes also with extensionality :

∙ ∀a ∀b. (∀i. a[i] = b[i] ⇒ a = b)

Is the following set of literals satisfiable in this theory?

store(a, i, x) ̸= b, b[i] = y, store(b, i, x)[j] = y, a = b, i = j

10

theories of interest: bit vectors

Useful both in hardware and software
verification [BCF+07, BB09a, HBJ+14b]

Universe consists of (fixed-sized) vectors of bits

Different types of operations:

∙ String-like: concat, extract, …
∙ Logical: bit-wise not, or, and, …
∙ Arithmetic: add, subtract, multiply, …
∙ Comparison: <,>, …

Is this formula satisfiable over bit vectors of size 3?

a[1 : 0] ̸= b[1 : 0] ∧ (a | b) = c ∧ c[0 : 0] = 0 ∧ a[1 : 0] + b[1 : 0] = 0

11

other interesting theories

∙ Floating point arithmetic [BDG+14, ZWR14]

∙ Ordinary differential equations [GKC13]

∙ (Co)Algebraic data-types [BST07, RB16]

∙ Strings and regular expressions [LRT+14, KGG+09]

∙ Finite sets with cardinality [BRBT16]

∙ Finite relations [MRTB17]

∙ …

12

theory solvers

theory solvers

Given a theory T, a Theory Solver for T takes as input a set Φ of
literals and determines whether Φ is T-satisfiable.

Φ is T-satisfiable iff there is some model M of T such that each
formula in Φ holds in M.

14

equality and uninterpreted functions

∙ Literals are of the form t1 = t2 and t1 ̸= t2

∙ Can be decided in O(n log(n)) based on congruence closure

∙ Efficient theory propagation for equalities

∙ Can generate:
∙ small explanations [DNS05]
∙ minimal (i.e., non-redundant) explanations [NO07b]
∙ smallest explanations (NP-hard) [FFHP]

∙ Typically the core of the SMT solver and used in other
theories

15

euf: congruence closure

Main idea: apply congruence axiom:

x1 = y1 ∧ · · · ∧ xn = yn ⇒ f(x1, . . . , xn) = f(y1, . . . , yn)

Example

[f(x, y) = x, h(y) = g(y), f(f(x, y), y) = z, g(x) ̸= g(z)]

Conflict Set:

1. g(x) ̸= g(z)
2. f(f(x, y), y) = z
3. f(x, y) = x

f(f(x,y),y)

f(x,y)

x y z

h(x) g(x) g(z)

16

euf: congruence closure

Main idea: apply congruence axiom:

x1 = y1 ∧ · · · ∧ xn = yn ⇒ f(x1, . . . , xn) = f(y1, . . . , yn)

Example

[f(x, y) = x, h(y) = g(y), f(f(x, y), y) = z, g(x) ̸= g(z)]

Conflict Set:

1. g(x) ̸= g(z)
2. f(f(x, y), y) = z
3. f(x, y) = x

f(f(x,y),y)

f(x,y)

x y z

h(x) g(x) g(z)

16

euf: congruence closure

Main idea: apply congruence axiom:

x1 = y1 ∧ · · · ∧ xn = yn ⇒ f(x1, . . . , xn) = f(y1, . . . , yn)

Example

[f(x, y) = x, h(y) = g(y), f(f(x, y), y) = z, g(x) ̸= g(z)]

Conflict Set:

1. g(x) ̸= g(z)
2. f(f(x, y), y) = z
3. f(x, y) = x

f(f(x,y),y)

f(x,y)

x y z

h(x) g(x) g(z)

16

euf: congruence closure

Main idea: apply congruence axiom:

x1 = y1 ∧ · · · ∧ xn = yn ⇒ f(x1, . . . , xn) = f(y1, . . . , yn)

Example

[f(x, y) = x, h(y) = g(y), f(f(x, y), y) = z, g(x) ̸= g(z)]

Conflict Set:

1. g(x) ̸= g(z)
2. f(f(x, y), y) = z
3. f(x, y) = x

f(f(x,y),y)

f(x,y)

x y z

h(x) g(x) g(z)

16

euf: congruence closure

Main idea: apply congruence axiom:

x1 = y1 ∧ · · · ∧ xn = yn ⇒ f(x1, . . . , xn) = f(y1, . . . , yn)

Example

[f(x, y) = x, h(y) = g(y), f(f(x, y), y) = z, g(x) ̸= g(z)]

Conflict Set:

1. g(x) ̸= g(z)
2. f(f(x, y), y) = z
3. f(x, y) = x

f(f(x,y),y)

f(x,y)

x y z

h(x) g(x) g(z)

16

euf: congruence closure

Main idea: apply congruence axiom:

x1 = y1 ∧ · · · ∧ xn = yn ⇒ f(x1, . . . , xn) = f(y1, . . . , yn)

Example

[f(x, y) = x, h(y) = g(y), f(f(x, y), y) = z, g(x) ̸= g(z)]

Conflict Set:

1. g(x) ̸= g(z)
2. f(f(x, y), y) = z
3. f(x, y) = x

f(f(x,y),y)

f(x,y)

x y z

h(x) g(x) g(z)

16

euf: congruence closure

Main idea: apply congruence axiom:

x1 = y1 ∧ · · · ∧ xn = yn ⇒ f(x1, . . . , xn) = f(y1, . . . , yn)

Example

[f(x, y) = x, h(y) = g(y), f(f(x, y), y) = z, g(x) ̸= g(z)]

Conflict Set:

1. g(x) ̸= g(z)
2. f(f(x, y), y) = z
3. f(x, y) = x

f(f(x,y),y)

f(x,y)

x y z

h(x) g(x) g(z)

16

euf: congruence closure

Main idea: apply congruence axiom:

x1 = y1 ∧ · · · ∧ xn = yn ⇒ f(x1, . . . , xn) = f(y1, . . . , yn)

Example

[f(x, y) = x, h(y) = g(y), f(f(x, y), y) = z, g(x) ̸= g(z)]

Conflict Set:

1. g(x) ̸= g(z)
2. f(f(x, y), y) = z
3. f(x, y) = x

f(f(x,y),y)

f(x,y)

x y z

h(x) g(x) g(z)

16

euf: congruence closure

Main idea: apply congruence axiom:

x1 = y1 ∧ · · · ∧ xn = yn ⇒ f(x1, . . . , xn) = f(y1, . . . , yn)

Example

[f(x, y) = x, h(y) = g(y), f(f(x, y), y) = z, g(x) ̸= g(z)]

Conflict Set:

1. g(x) ̸= g(z)
2. f(f(x, y), y) = z
3. f(x, y) = x

f(f(x,y),y)

f(x,y)

x y z

h(x) g(x) g(z)

16

euf: congruence closure

Main idea: apply congruence axiom:

x1 = y1 ∧ · · · ∧ xn = yn ⇒ f(x1, . . . , xn) = f(y1, . . . , yn)

Example

[f(x, y) = x, h(y) = g(y), f(f(x, y), y) = z, g(x) ̸= g(z)]

Conflict Set:

1. g(x) ̸= g(z)
2. f(f(x, y), y) = z
3. f(x, y) = x

f(f(x,y),y)

f(x,y)

x y z

h(x) g(x) g(z)

16

euf: congruence closure

Main idea: apply congruence axiom:

x1 = y1 ∧ · · · ∧ xn = yn ⇒ f(x1, . . . , xn) = f(y1, . . . , yn)

Example

[f(x, y) = x, h(y) = g(y), f(f(x, y), y) = z, g(x) ̸= g(z)]

Conflict Set:
1. g(x) ̸= g(z)

2. f(f(x, y), y) = z
3. f(x, y) = x

f(f(x,y),y)

f(x,y)

x y z

h(x) g(x) g(z)

16

euf: congruence closure

Main idea: apply congruence axiom:

x1 = y1 ∧ · · · ∧ xn = yn ⇒ f(x1, . . . , xn) = f(y1, . . . , yn)

Example

[f(x, y) = x, h(y) = g(y), f(f(x, y), y) = z, g(x) ̸= g(z)]

Conflict Set:
1. g(x) ̸= g(z)

2. f(f(x, y), y) = z
3. f(x, y) = x

f(f(x,y),y)

f(x,y)

x y z

h(x) g(x) g(z)

16

euf: congruence closure

Main idea: apply congruence axiom:

x1 = y1 ∧ · · · ∧ xn = yn ⇒ f(x1, . . . , xn) = f(y1, . . . , yn)

Example

[f(x, y) = x, h(y) = g(y), f(f(x, y), y) = z, g(x) ̸= g(z)]

Conflict Set:
1. g(x) ̸= g(z)

2. f(f(x, y), y) = z
3. f(x, y) = x

f(f(x,y),y)

f(x,y)

x y z

h(x) g(x) g(z)

16

euf: congruence closure

Main idea: apply congruence axiom:

x1 = y1 ∧ · · · ∧ xn = yn ⇒ f(x1, . . . , xn) = f(y1, . . . , yn)

Example

[f(x, y) = x, h(y) = g(y), f(f(x, y), y) = z, g(x) ̸= g(z)]

Conflict Set:
1. g(x) ̸= g(z)

2. f(f(x, y), y) = z
3. f(x, y) = x

f(f(x,y),y)

f(x,y)

x y z

h(x) g(x) g(z)

16

euf: congruence closure

Main idea: apply congruence axiom:

x1 = y1 ∧ · · · ∧ xn = yn ⇒ f(x1, . . . , xn) = f(y1, . . . , yn)

Example

[f(x, y) = x, h(y) = g(y), f(f(x, y), y) = z, g(x) ̸= g(z)]

Conflict Set:
1. g(x) ̸= g(z)
2. f(f(x, y), y) = z

3. f(x, y) = x

f(f(x,y),y)

f(x,y)

x y z

h(x) g(x) g(z)

16

euf: congruence closure

Main idea: apply congruence axiom:

x1 = y1 ∧ · · · ∧ xn = yn ⇒ f(x1, . . . , xn) = f(y1, . . . , yn)

Example

[f(x, y) = x, h(y) = g(y), f(f(x, y), y) = z, g(x) ̸= g(z)]

Conflict Set:
1. g(x) ̸= g(z)
2. f(f(x, y), y) = z
3. f(x, y) = x

f(f(x,y),y)

f(x,y)

x y z

h(x) g(x) g(z)

16

arrays

∀a, i, e : store(a, i, e)[i] = e
∀a, i, j, e : i ̸= j⇒ store(a, i, e)[j] = a[j]
∀a,b : a ̸= b⇒ ∃i : a[i] ̸= b[i]

Common approach:

∙ UF + lemmas on demand [BB09b, DMB09b]
∙ Use EUF as if store and _[_] were uninterpreted
∙ If UNSAT in EUF, then UNSAT in arrays too
∙ If SAT and solution satisfies array axioms, then SAT (lucky
case)

∙ If not, then refine by instantiating violated axioms

17

bit-vectors

Common approach:

1. Simplify/preprocess (heavily)
2. Encode to SAT (aka, bit blasting)
3. Send to a SAT solver

Alternatives [HBJ+14a, ZWR16] not yet mature

18

bit blasting

xi

yi

ci

XOR

XOR si

AND

AND

OR ci+1

Translation to CNF
∙ Each node a new variables
∙ XOR introduces 4 clauses
∙ AND introduces 3 clauses
∙ OR introduces 3 clauses
∙ 17 new clauses
∙ 5 new variables

19

bit blasting

xi

yi

ci

XOR

XOR si

AND

AND

OR ci+1

Translation to CNF
∙ Each node a new variables
∙ XOR introduces 4 clauses
∙ AND introduces 3 clauses
∙ OR introduces 3 clauses
∙ 17 new clauses
∙ 5 new variables

19

Bit-Blasting Addition/Multiplication

x[32] + y[32] 544 new clauses, 160 new
variables

x[32] × y[32] 10016 new clauses, 3008
new variables

difference logic

Language:

∙ Literals of the form
x− y ≤ k

with x and y variables (integer or real) and
k constant (integer or real)

∙ Reductions:
x− y = k −→ x− y ≤ k ∧ y− x ≤ k
x− y < k −→ x− y ≤ k− 1 (integers)
x− y < k −→ x− y ≤ k− δ (reals)

20

difference logic

∙ Any solution to a set of literals can be shifted:
∙ if v is a satisfying assignment, so is v′ = λx. v(x) + k

∙ We can use this to also process simple bounds x ≤ k:
∙ introduce fresh variable z (for zero),
∙ rewrite each x ≤ k to x− z ≤ k,
∙ given a solution v, shift it so that v′(z) = 0

∙ If we allow (dis)equalities as literals,
∙ in reals, satisfiability is polynomial
∙ in integers, satisfiability is NP-hard

Common approach: Cycle detection

21

difference logic: from literals to graph

1. Construct a graph from literals
2. Check if there is a negative path

Theorem Literals unsatisfiable⇔ ∃ negative path

Example

[x ≤ 1, x− y ≤ 2, y− z ≤ 3, z− x ≤ −6]

Conflict Set:
x− y ≤ 2, y− z ≤ 3, z− x ≤ −6

22

difference logic: from literals to graph

1. Construct a graph from literals
2. Check if there is a negative path

Theorem Literals unsatisfiable⇔ ∃ negative path

Example

[x ≤ 1, x− y ≤ 2, y− z ≤ 3, z− x ≤ −6]

Conflict Set:
x− y ≤ 2, y− z ≤ 3, z− x ≤ −6

x y

z

0

22

difference logic: from literals to graph

1. Construct a graph from literals
2. Check if there is a negative path

Theorem Literals unsatisfiable⇔ ∃ negative path

Example

[x ≤ 1, x− y ≤ 2, y− z ≤ 3, z− x ≤ −6]

Conflict Set:
x− y ≤ 2, y− z ≤ 3, z− x ≤ −6

x y

z

0
1

22

difference logic: from literals to graph

1. Construct a graph from literals
2. Check if there is a negative path

Theorem Literals unsatisfiable⇔ ∃ negative path

Example

[x ≤ 1, x− y ≤ 2, y− z ≤ 3, z− x ≤ −6]

Conflict Set:
x− y ≤ 2, y− z ≤ 3, z− x ≤ −6

x y

z

0
1

2

22

difference logic: from literals to graph

1. Construct a graph from literals
2. Check if there is a negative path

Theorem Literals unsatisfiable⇔ ∃ negative path

Example

[x ≤ 1, x− y ≤ 2, y− z ≤ 3, z− x ≤ −6]

Conflict Set:
x− y ≤ 2, y− z ≤ 3, z− x ≤ −6

x y

z

0
1

2

3

22

difference logic: from literals to graph

1. Construct a graph from literals
2. Check if there is a negative path

Theorem Literals unsatisfiable⇔ ∃ negative path

Example

[x ≤ 1, x− y ≤ 2, y− z ≤ 3, z− x ≤ −6]

Conflict Set:
x− y ≤ 2, y− z ≤ 3, z− x ≤ −6

x y

z

0
1

2

-6 3

22

difference logic: from literals to graph

1. Construct a graph from literals
2. Check if there is a negative path

Theorem Literals unsatisfiable⇔ ∃ negative path

Example

[x ≤ 1, x− y ≤ 2, y− z ≤ 3, z− x ≤ −6]

Conflict Set:
x− y ≤ 2, y− z ≤ 3, z− x ≤ −6

x y

z

0
1

2

-6 3

22

difference logic: from literals to graph

1. Construct a graph from literals
2. Check if there is a negative path

Theorem Literals unsatisfiable⇔ ∃ negative path

Example

[x ≤ 1, x− y ≤ 2, y− z ≤ 3, z− x ≤ −6]

Conflict Set:
x− y ≤ 2, y− z ≤ 3, z− x ≤ −6 x y

z

0
1

2

-6 3

22

linear arithmetic

Language:

∙ Literals of the form a1x1 + · · ·+ anxn ▷◁ b
with a1 positive and ▷◁ ∈ {≤,≥}

∙ Reductions:
t = b −→ t ≤ b ∧ t ≥ b
t < b −→ t ≤ b− 1 (integer arith.)
t < b −→ t ≤ b− δ (real arith.)

Common approach: variant of Simplex designed for
SMT [DDM06b]

∙ Incremental
∙ Cheap backtracking
∙ Can do theory propagation
∙ Can generate minimal explanations
∙ Worst case exponential but fast in practice

23

linear real/rational arithmetic: simplex

Rewrite each
∑
aixi ▷◁ b as s ▷◁ b with s =

∑
aixi

We get tableau of equations + simple bounds on variables

∙ Tableau is fixed (modulo pivoting and substitutions)
∙ Bounds can be asserted and retracted

Tableau
s1 = a1,1 · x1 + · · ·+ a1,i · xj + · · ·+ a1,n · xn

...
si = ai,1 · x1 + · · ·+ ai,i · xj + · · ·+ ai,n · xn

...
sm = am,1 · x1 + · · ·+ am,i · xj + · · ·+ am,n · xn

Bounds
...

li ≤ si ≤ ui
...

lj ≤ xj ≤ uj
...

24

linear rational arithmetic: tableau

Tableau

s1 = a1,1 · x1 + · · ·+ a1,i · xj + · · ·+ a1,n · xn
...
si = ai,1 · x1 + · · ·+ ai,i · xj + · · ·+ ai,n · xn
...

sm = am,1 · x1 + · · ·+ am,i · xj + · · ·+ am,n · xn

Bounds
...

li ≤ si ≤ ui
...

lj ≤ xj ≤ uj
...

∙ lhs variables are basic, rhs variables are non-basic
∙ Keep an assignment v of all variables:
∙ v satisfies the tableau,
∙ v satisfies bounds on the non-basic variables

∙ Initially v(x) = 0 and −∞ ≤ x ≤ +∞

25

linear rational arithmetic: tableau

Tableau

s1 = a1,1 · x1 + · · ·+ a1,i · xj + · · ·+ a1,n · xn
...
si = ai,1 · x1 + · · ·+ ai,i · xj + · · ·+ ai,n · xn
...

sm = am,1 · x1 + · · ·+ am,i · xj + · · ·+ am,n · xn

Bounds
...

li ≤ si ≤ ui
...

lj ≤ xj ≤ uj
...

∙ lhs variables are basic, rhs variables are non-basic

∙ Keep an assignment v of all variables:
∙ v satisfies the tableau,
∙ v satisfies bounds on the non-basic variables

∙ Initially v(x) = 0 and −∞ ≤ x ≤ +∞

25

linear rational arithmetic: tableau

Tableau

s1 = a1,1 · x1 + · · ·+ a1,i · xj + · · ·+ a1,n · xn
...
si = ai,1 · x1 + · · ·+ ai,i · xj + · · ·+ ai,n · xn
...

sm = am,1 · x1 + · · ·+ am,i · xj + · · ·+ am,n · xn

Bounds
...

li ≤ si ≤ ui
...

lj ≤ xj ≤ uj
...

∙ lhs variables are basic, rhs variables are non-basic

∙ Keep an assignment v of all variables:
∙ v satisfies the tableau,
∙ v satisfies bounds on the non-basic variables

∙ Initially v(x) = 0 and −∞ ≤ x ≤ +∞

25

linear rational arithmetic: tableau

Tableau

s1 = a1,1 · x1 + · · ·+ a1,i · xj + · · ·+ a1,n · xn
...
si = ai,1 · x1 + · · ·+ ai,i · xj + · · ·+ ai,n · xn
...

sm = am,1 · x1 + · · ·+ am,i · xj + · · ·+ am,n · xn

Bounds
...

li ≤ si ≤ ui
...

lj ≤ xj ≤ uj
...

∙ lhs variables are basic, rhs variables are non-basic

∙ Keep an assignment v of all variables:
∙ v satisfies the tableau,
∙ v satisfies bounds on the non-basic variables

∙ Initially v(x) = 0 and −∞ ≤ x ≤ +∞

25

linear rational arithmetic: tableau

Tableau

s1 = a1,1 · x1 + · · ·+ a1,i · xj + · · ·+ a1,n · xn
...
si = ai,1 · x1 + · · ·+ ai,i · xj + · · ·+ ai,n · xn
...

sm = am,1 · x1 + · · ·+ am,i · xj + · · ·+ am,n · xn

Bounds
...

li ≤ si ≤ ui
...

lj ≤ xj ≤ uj
...

∙ lhs variables are basic, rhs variables are non-basic
∙ Keep an assignment v of all variables:
∙ v satisfies the tableau,
∙ v satisfies bounds on the non-basic variables

∙ Initially v(x) = 0 and −∞ ≤ x ≤ +∞

25

linear rational arithmetic: tableau

Tableau

s1 = a1,1 · x1 + · · ·+ a1,i · xj + · · ·+ a1,n · xn
...
si = ai,1 · x1 + · · ·+ ai,i · xj + · · ·+ ai,n · xn
...

sm = am,1 · x1 + · · ·+ am,i · xj + · · ·+ am,n · xn

Bounds
...

li ≤ si ≤ ui
...

lj ≤ xj ≤ uj
...

∙ lhs variables are basic, rhs variables are non-basic
∙ Keep an assignment v of all variables:
∙ v satisfies the tableau,
∙ v satisfies bounds on the non-basic variables

∙ Initially v(x) = 0 and −∞ ≤ x ≤ +∞
25

linear rational arithmetic: tableau

Tableau

s1 = a1,1 · x1 + · · ·+ a1,i · xj + · · ·+ a1,n · xn
...
si = ai,1 · x1 + · · ·+ ai,i · xj + · · ·+ ai,n · xn
...

sm = am,1 · x1 + · · ·+ am,i · xj + · · ·+ am,n · xn

Bounds
...

li ≤ si ≤ ui
...

lj ≤ xj ≤ uj
...

Case 1:
∙ v satisfies bound on the basic variables too
∙ Satisfiable, v is the model!

25

linear rational arithmetic: tableau

Tableau

s1 = a1,1 · x1 + · · ·+ a1,i · xj + · · ·+ a1,n · xn
...
si = ai,1 · x1 + · · ·+ ai,i · xj + · · ·+ ai,n · xn
...

sm = am,1 · x1 + · · ·+ am,i · xj + · · ·+ am,n · xn

Bounds
...

li ≤ si ≤ ui
...

lj ≤ xj ≤ uj
...

Case 2:
∙ v doesn’t satisfy bound on some si and
all xj’s that si depends on are at their bounds (can’t fix)

∙ Unsatisfiable, the row is the explanation

25

linear rational arithmetic: tableau

Tableau

s1 = a1,1 · x1 + · · ·+ a1,i · xj + · · ·+ a1,n · xn
...
si = ai,1 · x1 + · · ·+ ai,i · xj + · · ·+ ai,n · xn
...

sm = am,1 · x1 + · · ·+ am,i · xj + · · ·+ am,n · xn

Bounds
...

li ≤ si ≤ ui
...

lj ≤ xj ≤ uj
...

Case 3:
∙ v doesn’t satisfy bound on some si, and
some xj’s that si depends on has some slack

∙ Pivot, substitute, and continue

25

linear rational arithmetic: example

-1 1 2 3 4 5 6

-1

1

2

3

4

[2y− x− 2 ≤ 0, −2y− x+ 4 ≤ 0]

Tableau

s1 = 2y− x
s2 = −2y− x

Bounds

−∞ ≤ x ≤ +∞
−∞ ≤ y ≤ +∞
−∞ ≤ s1 ≤ +∞
−∞ ≤ s2 ≤ +∞

Assignment

x 7→ 0
y 7→ 0
s1 7→ 0
s2 7→ 0

26

linear rational arithmetic: example

1 1 2 3 4 5 6

1

1

2

3

4

[s1 ≤ 2, s2 ≤ −4]

Tableau

s1 = 2y− x
s2 = −2y− x

Bounds

−∞ ≤ x ≤ +∞
−∞ ≤ y ≤ +∞
−∞ ≤ s1 ≤ +∞
−∞ ≤ s2 ≤ +∞

Assignment

x 7→ 0
y 7→ 0
s1 7→ 0
s2 7→ 0

26

linear rational arithmetic: example

1 1 2 3 4 5 6

1

1

2

3

4

[s1 ≤ 2, s2 ≤ −4]

Tableau

s1 = 2y− x
s2 = −2y− x

Bounds

−∞ ≤ x ≤ +∞
−∞ ≤ y ≤ +∞
−∞ ≤ s1 ≤ +∞
−∞ ≤ s2 ≤ +∞

Assignment

x 7→ 0
y 7→ 0
s1 7→ 0
s2 7→ 0

26

linear rational arithmetic: example

1 1 2 3 4 5 6

1

1

2

3

4

[s1 ≤ 2, s2 ≤ −4]

Tableau

s1 = 2y− x
s2 = −2y− x

Bounds

−∞ ≤ x ≤ +∞
−∞ ≤ y ≤ +∞
−∞ ≤ s1 ≤ 2
−∞ ≤ s2 ≤ +∞

Assignment

x 7→ 0
y 7→ 0
s1 7→ 0
s2 7→ 0

26

linear rational arithmetic: example

1 1 2 3 4 5 6

1

1

2

3

4

[s1 ≤ 2, s2 ≤ −4]

Tableau

s1 = 2y− x
s2 = −2y− x

Bounds

−∞ ≤ x ≤ +∞
−∞ ≤ y ≤ +∞
−∞ ≤ s1 ≤ 2
−∞ ≤ s2 ≤ +∞

Assignment

x 7→ 0
y 7→ 0
s1 7→ 0
s2 7→ 0

26

linear rational arithmetic: example

1 1 2 3 4 5 6

1

1

2

3

4

[s1 ≤ 2, s2 ≤ −4]

Tableau

s1 = 2y− x
s2 = −2y− x

Bounds

−∞ ≤ x ≤ +∞
−∞ ≤ y ≤ +∞
−∞ ≤ s1 ≤ 2
−∞ ≤ s2 ≤ − 4

Assignment

x 7→ 0
y 7→ 0
s1 7→ 0
s2 7→ 0

26

linear rational arithmetic: example

1 1 2 3 4 5 6

1

1

2

3

4

[s1 ≤ 2, s2 ≤ −4]

Tableau

s1 = 2y− x
s2 = −2y− x

Bounds

−∞ ≤ x ≤ +∞
−∞ ≤ y ≤ +∞
−∞ ≤ s1 ≤ 2
−∞ ≤ s2 ≤ − 4

Assignment

x 7→ 0
y 7→ 0
s1 7→ 0
s2 7→ 0

26

s2’s bound violated

∙ There is slack in y
∙ Pivot s2 and y
∙ Update s2 value
∙ Update basic vars

linear rational arithmetic: example

1 1 2 3 4 5 6

1

1

2

3

4

[s1 ≤ 2, s2 ≤ −4]

Tableau

s1 = 2y− x
s2 = −2y− x

Bounds

−∞ ≤ x ≤ +∞
−∞ ≤ y ≤ +∞
−∞ ≤ s1 ≤ 2
−∞ ≤ s2 ≤ − 4

Assignment

x 7→ 0
y 7→ 0
s1 7→ 0
s2 7→ 0

26

s2’s bound violated

∙ There is slack in y

∙ Pivot s2 and y
∙ Update s2 value
∙ Update basic vars

linear rational arithmetic: example

1 1 2 3 4 5 6

1

1

2

3

4

[s1 ≤ 2, s2 ≤ −4]

Tableau

s1 = 2y− x
s2 = −2y− x

Bounds

−∞ ≤ x ≤ +∞
−∞ ≤ y ≤ +∞
−∞ ≤ s1 ≤ 2
−∞ ≤ s2 ≤ − 4

Assignment

x 7→ 0
y 7→ 0
s1 7→ 0
s2 7→ 0

26

s2’s bound violated

∙ There is slack in y
∙ Pivot s2 and y

∙ Update s2 value
∙ Update basic vars

linear rational arithmetic: example

1 1 2 3 4 5 6

1

1

2

3

4

[s1 ≤ 2, s2 ≤ −4]

Tableau

s1 = −s2 − 2x

y = − 12s2 −
1
2x

Bounds

−∞ ≤ x ≤ +∞
−∞ ≤ y ≤ +∞
−∞ ≤ s1 ≤ 2
−∞ ≤ s2 ≤ − 4

Assignment

x 7→ 0
y 7→ 0
s1 7→ 0
s2 7→ 0

26

s2’s bound violated

∙ There is slack in y
∙ Pivot s2 and y

∙ Update s2 value
∙ Update basic vars

linear rational arithmetic: example

1 1 2 3 4 5 6

1

1

2

3

4

[s1 ≤ 2, s2 ≤ −4]

Tableau

s1 = −s2 − 2x

y = − 12s2 −
1
2x

Bounds

−∞ ≤ x ≤ +∞
−∞ ≤ y ≤ +∞
−∞ ≤ s1 ≤ 2
−∞ ≤ s2 ≤ − 4

Assignment

x 7→ 0
y 7→ 0
s1 7→ 0
s2 7→ 0

26

s2’s bound violated

∙ There is slack in y
∙ Pivot s2 and y
∙ Update s2 value

∙ Update basic vars

linear rational arithmetic: example

1 1 2 3 4 5 6

1

1

2

3

4

[s1 ≤ 2, s2 ≤ −4]

Tableau

s1 = −s2 − 2x

y = − 12s2 −
1
2x

Bounds

−∞ ≤ x ≤ +∞
−∞ ≤ y ≤ +∞
−∞ ≤ s1 ≤ 2
−∞ ≤ s2 ≤ − 4

Assignment

x 7→ 0
y 7→ 0
s1 7→ 0
s2 7→ −4

26

s2’s bound violated

∙ There is slack in y
∙ Pivot s2 and y
∙ Update s2 value

∙ Update basic vars

linear rational arithmetic: example

1 1 2 3 4 5 6

1

1

2

3

4

[s1 ≤ 2, s2 ≤ −4]

Tableau

s1 = −s2 − 2x

y = − 12s2 −
1
2x

Bounds

−∞ ≤ x ≤ +∞
−∞ ≤ y ≤ +∞
−∞ ≤ s1 ≤ 2
−∞ ≤ s2 ≤ − 4

Assignment

x 7→ 0
y 7→ 0
s1 7→ 0
s2 7→ −4

26

s2’s bound violated

∙ There is slack in y
∙ Pivot s2 and y
∙ Update s2 value
∙ Update basic vars

linear rational arithmetic: example

1 1 2 3 4 5 6

1

1

2

3

4

[s1 ≤ 2, s2 ≤ −4]

Tableau

s1 = −s2 − 2x

y = − 12s2 −
1
2x

Bounds

−∞ ≤ x ≤ +∞
−∞ ≤ y ≤ +∞
−∞ ≤ s1 ≤ 2
−∞ ≤ s2 ≤ − 4

Assignment

x 7→ 0
y 7→ 2
s1 7→ 4
s2 7→ −4

26

s2’s bound violated

∙ There is slack in y
∙ Pivot s2 and y
∙ Update s2 value
∙ Update basic vars

linear rational arithmetic: example

1 1 2 3 4 5 6

1

1

2

3

4

[s1 ≤ 2, s2 ≤ −4]

Tableau

s1 = −s2 − 2x

y = − 12s2 −
1
2x

Bounds

−∞ ≤ x ≤ +∞
−∞ ≤ y ≤ +∞
−∞ ≤ s1 ≤ 2
−∞ ≤ s2 ≤ − 4

Assignment

x 7→ 0
y 7→ 2
s1 7→ 4
s2 7→ −4

26

s1’s bound violated

∙ There is slack in x
∙ Pivot s1 and x
∙ Update s1 value
∙ Update basic vars

linear rational arithmetic: example

1 1 2 3 4 5 6

1

1

2

3

4

[s1 ≤ 2, s2 ≤ −4]

Tableau

s1 = −s2 − 2x

y = − 12s2 −
1
2x

Bounds

−∞ ≤ x ≤ +∞
−∞ ≤ y ≤ +∞
−∞ ≤ s1 ≤ 2
−∞ ≤ s2 ≤ − 4

Assignment

x 7→ 0
y 7→ 2
s1 7→ 4
s2 7→ −4

26

s1’s bound violated

∙ There is slack in x

∙ Pivot s1 and x
∙ Update s1 value
∙ Update basic vars

linear rational arithmetic: example

1 1 2 3 4 5 6

1

1

2

3

4

[s1 ≤ 2, s2 ≤ −4]

Tableau

s1 = −s2 − 2x

y = − 12s2 −
1
2x

Bounds

−∞ ≤ x ≤ +∞
−∞ ≤ y ≤ +∞
−∞ ≤ s1 ≤ 2
−∞ ≤ s2 ≤ − 4

Assignment

x 7→ 0
y 7→ 2
s1 7→ 4
s2 7→ −4

26

s1’s bound violated

∙ There is slack in x
∙ Pivot s1 and x

∙ Update s1 value
∙ Update basic vars

linear rational arithmetic: example

1 1 2 3 4 5 6

1

1

2

3

4

[s1 ≤ 2, s2 ≤ −4]

Tableau

x = − 12s1 −
1
2s2

y = 1
4s1 −

1
4s2

Bounds

−∞ ≤ x ≤ +∞
−∞ ≤ y ≤ +∞
−∞ ≤ s1 ≤ 2
−∞ ≤ s2 ≤ − 4

Assignment

x 7→ 0
y 7→ 2
s1 7→ 4
s2 7→ −4

26

s1’s bound violated

∙ There is slack in x
∙ Pivot s1 and x

∙ Update s1 value
∙ Update basic vars

linear rational arithmetic: example

1 1 2 3 4 5 6

1

1

2

3

4

[s1 ≤ 2, s2 ≤ −4]

Tableau

x = − 12s1 −
1
2s2

y = 1
4s1 −

1
4s2

Bounds

−∞ ≤ x ≤ +∞
−∞ ≤ y ≤ +∞
−∞ ≤ s1 ≤ 2
−∞ ≤ s2 ≤ − 4

Assignment

x 7→ 0
y 7→ 2
s1 7→ 4
s2 7→ −4

26

s1’s bound violated

∙ There is slack in x
∙ Pivot s1 and x
∙ Update s1 value

∙ Update basic vars

linear rational arithmetic: example

1 1 2 3 4 5 6

1

1

2

3

4

[s1 ≤ 2, s2 ≤ −4]

Tableau

x = − 12s1 −
1
2s2

y = 1
4s1 −

1
4s2

Bounds

−∞ ≤ x ≤ +∞
−∞ ≤ y ≤ +∞
−∞ ≤ s1 ≤ 2
−∞ ≤ s2 ≤ − 4

Assignment

x 7→ 0
y 7→ 2
s1 7→ 2
s2 7→ −4

26

s1’s bound violated

∙ There is slack in x
∙ Pivot s1 and x
∙ Update s1 value

∙ Update basic vars

linear rational arithmetic: example

1 1 2 3 4 5 6

1

1

2

3

4

[s1 ≤ 2, s2 ≤ −4]

Tableau

x = − 12s1 −
1
2s2

y = 1
4s1 −

1
4s2

Bounds

−∞ ≤ x ≤ +∞
−∞ ≤ y ≤ +∞
−∞ ≤ s1 ≤ 2
−∞ ≤ s2 ≤ − 4

Assignment

x 7→ 0
y 7→ 2
s1 7→ 2
s2 7→ −4

26

s1’s bound violated

∙ There is slack in x
∙ Pivot s1 and x
∙ Update s1 value
∙ Update basic vars

linear rational arithmetic: example

1 1 2 3 4 5 6

1

1

2

3

4

[s1 ≤ 2, s2 ≤ −4]

Tableau

x = − 12s1 −
1
2s2

y = 1
4s1 −

1
4s2

Bounds

−∞ ≤ x ≤ +∞
−∞ ≤ y ≤ +∞
−∞ ≤ s1 ≤ 2
−∞ ≤ s2 ≤ − 4

Assignment

x 7→ 1

y 7→ 3
2

s1 7→ 2
s2 7→ −4

26

s1’s bound violated

∙ There is slack in x
∙ Pivot s1 and x
∙ Update s1 value
∙ Update basic vars

linear rational arithmetic: example

1 1 2 3 4 5 6

1

1

2

3

4

[s1 ≤ 2, s2 ≤ −4]

Tableau

x = − 12s1 −
1
2s2

y = 1
4s1 −

1
4s2

Bounds

−∞ ≤ x ≤ +∞
−∞ ≤ y ≤ +∞
−∞ ≤ s1 ≤ 2
−∞ ≤ s2 ≤ − 4

Assignment

x 7→ 1

y 7→ 3
2

s1 7→ 2
s2 7→ −4

26

linear integer arithmetic

Classic NP-complete problem [Pap81]

Admits quantifier elimination [Coo72]

27

linear integer arithmetic

Common approach:

∙ Simplex + Branch-And-Bound [DDM06b, Gri12, Kin14]

∙ Use Simplex to solve real relaxation (treat variables as real)

∙ If UNSAT over reals, then UNSAT over integers too

∙ If SAT and solution v is integral, then SAT (lucky case)

∙ Otherwise, refine:
∙ Add branch-and-bound lemmas: x ≤ ⌊v(x)⌋ ∨ x ≥ ⌈v(x)⌉
∙ Add cutting plane lemmas: new implied inequality falsified by v

∙ Additionally solve integer equalities

∙ Not guaranteed to terminate

27

linear integer arithmetic

Common approach:

∙ Simplex + Branch-And-Bound [DDM06b, Gri12, Kin14]

∙ Use Simplex to solve real relaxation (treat variables as real)

∙ If UNSAT over reals, then UNSAT over integers too

∙ If SAT and solution v is integral, then SAT (lucky case)

∙ Otherwise, refine:
∙ Add branch-and-bound lemmas: x ≤ ⌊v(x)⌋ ∨ x ≥ ⌈v(x)⌉
∙ Add cutting plane lemmas: new implied inequality falsified by v

∙ Additionally solve integer equalities

∙ Not guaranteed to terminate

Alternatives [JdM13, BSW15] not yet mature
27

non-linear arithmetic

f(y, x) = am · xdm + am−1 · xdm−1 + · · ·+ a1 · xd1 + a0

f is in Z[y, x], ai are in Z[y]

Examples

f(x, y) = (x2 − 1)y2 + (x+ 1)y− 1 ∈ Z[x, y]
g(x) = 16x3 − 8x2 + x+ 16 ∈ Z[x]

Polynomial Constraints

f(x, y) > 0 ∧ g(x) < 0

28

cylindrical algebraic decomposition

p1 > 0 ∨ (p2 = 0 ∧ p3 < 0) p1,p2,p3 ∈ Z[x1, . . . , xn]

Projection (Saturation)

Project polynomials using a projection P

{p1,p2,p3} 7→ {p1,p2,p3,p4, . . . ,pn}

Lifting (Model construction)

For each variable xk
1. Isolate roots of pi(α, xk)
2. Choose a cell C and assign xk 7→ αk ∈ C, continue
3. If no more cells, backtrack

29

non-linear real arithmetic

Model Construction

Build partial model by assigning variables to values
[. . . , C1, C2, . . . , x 7→

√
2/2, . . .]

Unit Reasoning

Reason about unit constraints
C1 ≡ (x2 + y2 < 1) C2 ≡ (xy > 1)

Explain Conflicts

Explain conflicts using valid clausal reasons
C1 ∨ C2 ∨ x ≤ 0 ∨ x ≥ 1

30

non-linear real arithmetic

Model Construction

Build partial model by assigning variables to values
[. . . , C1, C2, . . . , x 7→

√
2/2, . . .]

Unit Reasoning

Reason about unit constraints
C1 ≡ (x2 + y2 < 1) C2 ≡ (xy > 1)

Explain Conflicts

Explain conflicts using valid clausal reasons
C1 ∨ C2 ∨ x ≤ 0 ∨ x ≥ 1

30

non-linear real arithmetic

x3 − 2x2 + 1 > 0

− 3x3 + 8x2 − 4x > 0

31

non-linear real arithmetic

-1 1 2 3

- 2

-1

1

2

3

4

5

x3 − 2x2 + 1 > 0

− 3x3 + 8x2 − 4x > 0

31

non-linear real arithmetic

-1 1 2 3

- 2

-1

1

2

3

4

5

x3 − 2x2 + 1 > 0

− 3x3 + 8x2 − 4x > 0

31

non-linear real arithmetic

-1 1 2 3

- 2

-1

1

2

3

4

5

x3 − 2x2 + 1 > 0

− 3x3 + 8x2 − 4x > 0

31

non-linear real arithmetic

-1 1 2 3

- 2

-1

1

2

3

4

5

x3 − 2x2 + 1 > 0 − 3x3 + 8x2 − 4x > 0

31

non-linear real arithmetic

-1 1 2 3

- 2

-1

1

2

3

4

5

x3 − 2x2 + 1 > 0 − 3x3 + 8x2 − 4x > 0

31

non-linear real arithmetic

-1 1 2 3

- 2

-1

1

2

3

4

5

x3 − 2x2 + 1 > 0 − 3x3 + 8x2 − 4x > 0

31

non-linear real arithmetic

Model Construction

Build partial model by assigning variables to values
[. . . , C1, C2, . . . , x 7→

√
2/2, . . .]

Unit Reasoning

Reason about unit constraints
C1 ≡ (x2 + y2 < 1) C2 ≡ (xy > 1)

Explain Conflicts

Explain conflicts using valid clausal reasons
C1 ∨ C2 ∨ x ≤ 0 ∨ x ≥ 1

32

non-linear real arithmetic

Model Construction

Build partial model by assigning variables to values
[. . . , C1, C2, . . . , x 7→

√
2/2, . . .]

Unit Reasoning

Reason about unit constraints
C1 ≡ (x2 + y2 < 1) C2 ≡ (xy > 1)

Explain Conflicts

Explain conflicts using valid clausal reasons
C1 ∨ C2 ∨ x ≤ 0 ∨ x ≥ 1

32

non-linear real arithmetic

- 2 -1 0 1 2

C1︷ ︸︸ ︷
x2 + y2 < 1 ∧

C2︷ ︸︸ ︷
xy > 1

[]

Explanation C1 ∧ C2 ⇒ x ̸=
√
2/2

33

non-linear real arithmetic

- 2 -1 0 1 2

C1︷ ︸︸ ︷
x2 + y2 < 1 ∧

C2︷ ︸︸ ︷
xy > 1

[C1, C2]

Explanation C1 ∧ C2 ⇒ x ̸=
√
2/2

33

non-linear real arithmetic

- 2 -1 0 1 2

C1︷ ︸︸ ︷
x2 + y2 < 1 ∧

C2︷ ︸︸ ︷
xy > 1

[C1, C2, x 7→
√
2/2]

Explanation C1 ∧ C2 ⇒ x ̸=
√
2/2

33

non-linear real arithmetic

- 2 -1 0 1 2

C1︷ ︸︸ ︷
x2 + y2 < 1 ∧

C2︷ ︸︸ ︷
xy > 1

[C1, C2, x 7→
√
2/2]

Explanation C1 ∧ C2 ⇒ x ̸=
√
2/2

33

Unit Constraint Reasoning

x2 + y2 < 1⇒ −
√
3/2 < y <

√
3/2

−2y− x+ 4 < 0⇒ y >
√
2

non-linear real arithmetic

- 2 -1 0 1 2

C1︷ ︸︸ ︷
x2 + y2 < 1 ∧

C2︷ ︸︸ ︷
xy > 1

[C1, C2, x 7→
√
2/2]

Explanation C1 ∧ C2 ⇒ x ̸=
√
2/2

33

non-linear real arithmetic

- 2 -1 0 1 2

C1︷ ︸︸ ︷
x2 + y2 < 1 ∧

C2︷ ︸︸ ︷
xy > 1

[C1, C2, x 7→
√
2/2]

Explanation C1 ∧ C2 ⇒

33

non-linear real arithmetic

- 2 -1 0 1 2

C1︷ ︸︸ ︷
x2 + y2 < 1 ∧

C2︷ ︸︸ ︷
xy > 1

[C1, C2, x 7→
√
2/2]

Explanation C1 ∧ C2 ⇒

33

CAD Projection

P = {x,−4+ 4x2, 1− x2 + x4}

non-linear real arithmetic

- 2 -1 0 1 2

C1︷ ︸︸ ︷
x2 + y2 < 1 ∧

C2︷ ︸︸ ︷
xy > 1

[C1, C2, x 7→
√
2/2]

Explanation C1 ∧ C2 ⇒

33

CAD Projection

P = {x,−4+ 4x2, 1− x2 + x4}

non-linear real arithmetic

- 2 -1 0 1 2

C1︷ ︸︸ ︷
x2 + y2 < 1 ∧

C2︷ ︸︸ ︷
xy > 1

[C1, C2, x 7→
√
2/2]

Explanation C1 ∧ C2 ⇒ x ≤ 0 ∨ x ≥ 1

33

non-linear real arithmetic

- 2 -1 0 1 2

C1︷ ︸︸ ︷
x2 + y2 < 1 ∧

C2︷ ︸︸ ︷
xy > 1

[C1, C2, x 7→
√
2/2]

Explanation C1 ∨ C2 ∨ x ≤ 0 ∨ x ≥ 1

33

non-linear real arithmetic

- 2 -1 0 1 2

C1︷ ︸︸ ︷
x2 + y2 < 1 ∧

C2︷ ︸︸ ︷
xy > 1

[C1, C2]

Explanation C1 ∨ C2 ∨ x ≤ 0 ∨ x ≥ 1

33

non-linear real arithmetic

- 2 -1 0 1 2

C1︷ ︸︸ ︷
x2 + y2 < 1 ∧

C2︷ ︸︸ ︷
xy > 1

[C1, C2, x ≥ 1]

Explanation C1 ∨ C2 ∨ x ≤ 0 ∨ x ≥ 1

33

non-linear real arithmetic

- 2 -1 0 1 2

C1︷ ︸︸ ︷
x2 + y2 < 1 ∧

C2︷ ︸︸ ︷
xy > 1

[C1, C2, x ≥ 1, x 7→ 3/2]

Explanation C1 ∨ C2 ∨ x ≤ 0 ∨ x ≥ 1

33

extending theory solvers to
qffs

satisfiability modulo a theory t

Def. A formula is (un)satisfiable in a theory T, or
T-(un)satisfiable, if there is a (no) model of T that satisfies it

Note: The T-satisfiability of quantifier-free formulas is
decidable iff the T-satisfiability of conjunctions/sets of literals
is decidable

(Convert the formula in DNF and check if any of its disjuncts is T-sat)

Problem: In practice, dealing with Boolean combinations of
literals is as hard as in propositional logic

Solution: Exploit propositional satisfiability technology

35

satisfiability modulo a theory t

Def. A formula is (un)satisfiable in a theory T, or
T-(un)satisfiable, if there is a (no) model of T that satisfies it

Note: The T-satisfiability of quantifier-free formulas is
decidable iff the T-satisfiability of conjunctions/sets of literals
is decidable

(Convert the formula in DNF and check if any of its disjuncts is T-sat)

Problem: In practice, dealing with Boolean combinations of
literals is as hard as in propositional logic

Solution: Exploit propositional satisfiability technology

35

satisfiability modulo a theory t

Def. A formula is (un)satisfiable in a theory T, or
T-(un)satisfiable, if there is a (no) model of T that satisfies it

Note: The T-satisfiability of quantifier-free formulas is
decidable iff the T-satisfiability of conjunctions/sets of literals
is decidable

(Convert the formula in DNF and check if any of its disjuncts is T-sat)

Problem: In practice, dealing with Boolean combinations of
literals is as hard as in propositional logic

Solution: Exploit propositional satisfiability technology

35

satisfiability modulo a theory t

Def. A formula is (un)satisfiable in a theory T, or
T-(un)satisfiable, if there is a (no) model of T that satisfies it

Note: The T-satisfiability of quantifier-free formulas is
decidable iff the T-satisfiability of conjunctions/sets of literals
is decidable

(Convert the formula in DNF and check if any of its disjuncts is T-sat)

Problem: In practice, dealing with Boolean combinations of
literals is as hard as in propositional logic

Solution: Exploit propositional satisfiability technology

35

satisfiability modulo a theory t

Def. A formula is (un)satisfiable in a theory T, or
T-(un)satisfiable, if there is a (no) model of T that satisfies it

Note: The T-satisfiability of quantifier-free formulas is
decidable iff the T-satisfiability of conjunctions/sets of literals
is decidable

(Convert the formula in DNF and check if any of its disjuncts is T-sat)

Problem: In practice, dealing with Boolean combinations of
literals is as hard as in propositional logic

Solution: Exploit propositional satisfiability technology
35

lifting sat technology to smt

Two main approaches:

1. “Eager” [PRSS99, SSB02, SLB03, BGV01, BV02]

∙ translate into an equisatisfiable propositional formula
∙ feed it to any SAT solver

Notable systems: UCLID

2. “Lazy” [ACG00, dMR02, BDS02, ABC+02]

∙ abstract the input formula to a propositional one
∙ feed it to a (DPLL-based) SAT solver
∙ use a theory decision procedure to refine the formula and
guide the SAT solver

Notable systems: Barcelogic, Boolector, CVC4, MathSAT, Yices,
veriT, Z3

36

lifting sat technology to smt

Two main approaches:

1. “Eager” [PRSS99, SSB02, SLB03, BGV01, BV02]

∙ translate into an equisatisfiable propositional formula
∙ feed it to any SAT solver

Notable systems: UCLID

2. “Lazy” [ACG00, dMR02, BDS02, ABC+02]

∙ abstract the input formula to a propositional one
∙ feed it to a (DPLL-based) SAT solver
∙ use a theory decision procedure to refine the formula and
guide the SAT solver

Notable systems: Barcelogic, Boolector, CVC4, MathSAT, Yices,
veriT, Z3

36

lifting sat technology to smt

Two main approaches:

1. “Eager” [PRSS99, SSB02, SLB03, BGV01, BV02]

∙ translate into an equisatisfiable propositional formula
∙ feed it to any SAT solver

Notable systems: UCLID

2. “Lazy” [ACG00, dMR02, BDS02, ABC+02]

∙ abstract the input formula to a propositional one
∙ feed it to a (DPLL-based) SAT solver
∙ use a theory decision procedure to refine the formula and
guide the SAT solver

Notable systems: Barcelogic, Boolector, CVC4, MathSAT, Yices,
veriT, Z3

36

We focus on the lazy approach

(very) lazy approach for smt – example

g(a) = c ∧ f(g(a)) ̸= f(c) ∨ g(a) = d ∧ c ̸= d

Theory T: Equality with Uninterpreted Functions

Simplest setting:

∙ Off-line SAT solver
∙ Non-incremental theory solver for conjunctions of equalities
and disequalities

∙ Theory atoms (e.g., g(a) = c) abstracted to propositional
atoms (e.g., 1)

37

(very) lazy approach for smt – example

g(a) = c ∧ f(g(a)) ̸= f(c) ∨ g(a) = d ∧ c ̸= d

Theory T: Equality with Uninterpreted Functions

Simplest setting:

∙ Off-line SAT solver
∙ Non-incremental theory solver for conjunctions of equalities
and disequalities

∙ Theory atoms (e.g., g(a) = c) abstracted to propositional
atoms (e.g., 1)

37

(very) lazy approach for smt – example

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) ̸= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c ̸= d︸ ︷︷ ︸
4

∙ Send {1, 2 ∨ 3, 4} to SAT solver.
∙ SAT solver returns model {1, 2, 4}.
Theory solver finds (concretization of) {1, 2, 4} unsat.

∙ Send {1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4} to SAT solver.
∙ SAT solver returns model {1, 3, 4}.
Theory solver finds {1, 3, 4} unsat.

∙ Send {1, 2 ∨ 3, 4, 1 ∨ 2, 1 ∨ 3 ∨ 4} to SAT solver.
∙ SAT solver finds {1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4, 1 ∨ 3 ∨ 4} unsat.

Done: the original formula is unsatisfiable in UF.

38

(very) lazy approach for smt – example

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) ̸= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c ̸= d︸ ︷︷ ︸
4

∙ Send {1, 2 ∨ 3, 4} to SAT solver.

∙ SAT solver returns model {1, 2, 4}.
Theory solver finds (concretization of) {1, 2, 4} unsat.

∙ Send {1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4} to SAT solver.
∙ SAT solver returns model {1, 3, 4}.
Theory solver finds {1, 3, 4} unsat.

∙ Send {1, 2 ∨ 3, 4, 1 ∨ 2, 1 ∨ 3 ∨ 4} to SAT solver.
∙ SAT solver finds {1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4, 1 ∨ 3 ∨ 4} unsat.

Done: the original formula is unsatisfiable in UF.

38

(very) lazy approach for smt – example

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) ̸= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c ̸= d︸ ︷︷ ︸
4

∙ Send {1, 2 ∨ 3, 4} to SAT solver.
∙ SAT solver returns model {1, 2, 4}.
Theory solver finds (concretization of) {1, 2, 4} unsat.

∙ Send {1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4} to SAT solver.
∙ SAT solver returns model {1, 3, 4}.
Theory solver finds {1, 3, 4} unsat.

∙ Send {1, 2 ∨ 3, 4, 1 ∨ 2, 1 ∨ 3 ∨ 4} to SAT solver.
∙ SAT solver finds {1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4, 1 ∨ 3 ∨ 4} unsat.

Done: the original formula is unsatisfiable in UF.

38

(very) lazy approach for smt – example

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) ̸= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c ̸= d︸ ︷︷ ︸
4

∙ Send {1, 2 ∨ 3, 4} to SAT solver.
∙ SAT solver returns model {1, 2, 4}.
Theory solver finds (concretization of) {1, 2, 4} unsat.

∙ Send {1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4} to SAT solver.

∙ SAT solver returns model {1, 3, 4}.
Theory solver finds {1, 3, 4} unsat.

∙ Send {1, 2 ∨ 3, 4, 1 ∨ 2, 1 ∨ 3 ∨ 4} to SAT solver.
∙ SAT solver finds {1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4, 1 ∨ 3 ∨ 4} unsat.

Done: the original formula is unsatisfiable in UF.

38

(very) lazy approach for smt – example

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) ̸= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c ̸= d︸ ︷︷ ︸
4

∙ Send {1, 2 ∨ 3, 4} to SAT solver.
∙ SAT solver returns model {1, 2, 4}.
Theory solver finds (concretization of) {1, 2, 4} unsat.

∙ Send {1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4} to SAT solver.
∙ SAT solver returns model {1, 3, 4}.
Theory solver finds {1, 3, 4} unsat.

∙ Send {1, 2 ∨ 3, 4, 1 ∨ 2, 1 ∨ 3 ∨ 4} to SAT solver.
∙ SAT solver finds {1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4, 1 ∨ 3 ∨ 4} unsat.

Done: the original formula is unsatisfiable in UF.

38

(very) lazy approach for smt – example

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) ̸= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c ̸= d︸ ︷︷ ︸
4

∙ Send {1, 2 ∨ 3, 4} to SAT solver.
∙ SAT solver returns model {1, 2, 4}.
Theory solver finds (concretization of) {1, 2, 4} unsat.

∙ Send {1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4} to SAT solver.
∙ SAT solver returns model {1, 3, 4}.
Theory solver finds {1, 3, 4} unsat.

∙ Send {1, 2 ∨ 3, 4, 1 ∨ 2, 1 ∨ 3 ∨ 4} to SAT solver.

∙ SAT solver finds {1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4, 1 ∨ 3 ∨ 4} unsat.

Done: the original formula is unsatisfiable in UF.

38

(very) lazy approach for smt – example

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) ̸= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c ̸= d︸ ︷︷ ︸
4

∙ Send {1, 2 ∨ 3, 4} to SAT solver.
∙ SAT solver returns model {1, 2, 4}.
Theory solver finds (concretization of) {1, 2, 4} unsat.

∙ Send {1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4} to SAT solver.
∙ SAT solver returns model {1, 3, 4}.
Theory solver finds {1, 3, 4} unsat.

∙ Send {1, 2 ∨ 3, 4, 1 ∨ 2, 1 ∨ 3 ∨ 4} to SAT solver.
∙ SAT solver finds {1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4, 1 ∨ 3 ∨ 4} unsat.

Done: the original formula is unsatisfiable in UF.

38

(very) lazy approach for smt – example

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) ̸= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c ̸= d︸ ︷︷ ︸
4

∙ Send {1, 2 ∨ 3, 4} to SAT solver.
∙ SAT solver returns model {1, 2, 4}.
Theory solver finds (concretization of) {1, 2, 4} unsat.

∙ Send {1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4} to SAT solver.
∙ SAT solver returns model {1, 3, 4}.
Theory solver finds {1, 3, 4} unsat.

∙ Send {1, 2 ∨ 3, 4, 1 ∨ 2, 1 ∨ 3 ∨ 4} to SAT solver.
∙ SAT solver finds {1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4, 1 ∨ 3 ∨ 4} unsat.
Done: the original formula is unsatisfiable in UF.

38

lazy approach – enhancements

Several enhancements are possible to increase efficiency:

∙ Check T-satisfiability only of full propositional model

∙ Check T-satisfiability of partial assignment M as it grows

∙
∙ If M is T-unsatisfiable, identify a T-unsatisfiable subset M0 of
M and add ¬M0 as a clause

∙
∙ If M is T-unsatisfiable, backtrack to some point where the
assignment was still T-satisfiable

39

lazy approach – enhancements

Several enhancements are possible to increase efficiency:

∙ Check T-satisfiability only of full propositional model
∙ Check T-satisfiability of partial assignment M as it grows

∙
∙ If M is T-unsatisfiable, identify a T-unsatisfiable subset M0 of
M and add ¬M0 as a clause

∙
∙ If M is T-unsatisfiable, backtrack to some point where the
assignment was still T-satisfiable

39

lazy approach – enhancements

Several enhancements are possible to increase efficiency:

∙ Check T-satisfiability only of full propositional model
∙ Check T-satisfiability of partial assignment M as it grows

∙ If M is T-unsatisfiable, add ¬M as a clause

∙ If M is T-unsatisfiable, identify a T-unsatisfiable subset M0 of
M and add ¬M0 as a clause

∙
∙ If M is T-unsatisfiable, backtrack to some point where the
assignment was still T-satisfiable

39

lazy approach – enhancements

Several enhancements are possible to increase efficiency:

∙ Check T-satisfiability only of full propositional model
∙ Check T-satisfiability of partial assignment M as it grows

∙ If M is T-unsatisfiable, add ¬M as a clause
∙ If M is T-unsatisfiable, identify a T-unsatisfiable subset M0 of
M and add ¬M0 as a clause

∙
∙ If M is T-unsatisfiable, backtrack to some point where the
assignment was still T-satisfiable

39

lazy approach – enhancements

Several enhancements are possible to increase efficiency:

∙ Check T-satisfiability only of full propositional model
∙ Check T-satisfiability of partial assignment M as it grows

∙ If M is T-unsatisfiable, add ¬M as a clause
∙ If M is T-unsatisfiable, identify a T-unsatisfiable subset M0 of
M and add ¬M0 as a clause

∙ If M is T-unsatisfiable, add clause and restart

∙ If M is T-unsatisfiable, backtrack to some point where the
assignment was still T-satisfiable

39

lazy approach – enhancements

Several enhancements are possible to increase efficiency:

∙ Check T-satisfiability only of full propositional model
∙ Check T-satisfiability of partial assignment M as it grows

∙ If M is T-unsatisfiable, add ¬M as a clause
∙ If M is T-unsatisfiable, identify a T-unsatisfiable subset M0 of
M and add ¬M0 as a clause

∙ If M is T-unsatisfiable, add clause and restart
∙ If M is T-unsatisfiable, backtrack to some point where the
assignment was still T-satisfiable

39

lazy approach – main benefits

∙ Every tool does what it is good at:
∙ SAT solver takes care of Boolean information
∙ Theory solver takes care of theory information

∙ The theory solver works only with conjunctions of literals

∙ Modular approach:
∙ SAT and theory solvers communicate via a simple API [GHN+04]

∙ SMT for a new theory only requires new theory solver
∙ An off-the-shelf SAT solver can be embedded in a lazy SMT
system with few new lines of code (tens)

40

lazy approach – main benefits

∙ Every tool does what it is good at:
∙ SAT solver takes care of Boolean information
∙ Theory solver takes care of theory information

∙ The theory solver works only with conjunctions of literals

∙ Modular approach:
∙ SAT and theory solvers communicate via a simple API [GHN+04]

∙ SMT for a new theory only requires new theory solver
∙ An off-the-shelf SAT solver can be embedded in a lazy SMT
system with few new lines of code (tens)

40

lazy approach – main benefits

∙ Every tool does what it is good at:
∙ SAT solver takes care of Boolean information
∙ Theory solver takes care of theory information

∙ The theory solver works only with conjunctions of literals

∙ Modular approach:
∙ SAT and theory solvers communicate via a simple API [GHN+04]

∙ SMT for a new theory only requires new theory solver
∙ An off-the-shelf SAT solver can be embedded in a lazy SMT
system with few new lines of code (tens)

40

an abstract framework for lazy smt

Several variants and enhancements of lazy SMT solvers exist

They can be modeled abstractly and declaratively as transition
systems

A transition system is a binary relation over states, induced by
a set of conditional transition rules

The framework can be first developed for SAT and then
extended to lazy SMT [NOT06, KG07]

41

advantages of abstract framework

An abstract framework helps one:

∙ skip over implementation details and unimportant control
aspects

∙ reason formally about solvers for SAT and SMT
∙ model advanced features such as non-chronological
bactracking, lemma learning, theory propagation, …

∙ describe different strategies and prove their correctness
∙ compare different systems at a higher level
∙ get new insights for further enhancements

The one described next is a re-elaboration of those in
[NOT06, KG07]

42

advantages of abstract framework

An abstract framework helps one:

∙ skip over implementation details and unimportant control
aspects

∙ reason formally about solvers for SAT and SMT
∙ model advanced features such as non-chronological
bactracking, lemma learning, theory propagation, …

∙ describe different strategies and prove their correctness
∙ compare different systems at a higher level
∙ get new insights for further enhancements

The one described next is a re-elaboration of those in
[NOT06, KG07]

42

the original dpll procedure

∙ Modern SAT solvers are based on the DPLL
procedure [DP60, DLL62]

∙ DPLL tries to build incrementally a satisfying truth
assignment M for a CNF formula F

∙ M is grown by
∙ deducing the truth value of a literal from M and F, or
∙ guessing a truth value

∙ If a wrong guess for a literal leads to an inconsistency, the
procedure backtracks and tries the opposite value

43

an abstract framework for dpll

States:

fail or ⟨M, F⟩

where

∙ M is a sequence of literals and decision points •
denoting a partial truth assignment

∙ F is a set of clauses denoting a CNF formula

Def. If M = M0 • M1 • · · · • Mn where each Mi contains no decision points

∙ Mi is decision level i of M

∙ M[i] def
= M0 • · · · • Mi

44

an abstract framework for dpll

States:

fail or ⟨M, F⟩

Initial state:

∙ ⟨(), F0⟩, where F0 is to be checked for satisfiability

Expected final states:

∙ fail if F0 is unsatisfiable
∙ ⟨M,G⟩ otherwise, where
∙ G is equivalent to F0 and
∙ M satisfies G

44

transition rules: notation

States treated like records:

∙ M denotes the truth assignment component of current state
∙ F denotes the formula component of current state

Transition rules in guarded assignment form [KG07]

p1 · · · pn
[M := e1] [F := e2]

updating M, F or both when premises p1, . . . ,pn all hold

45

transition rules for the original dpll

Extending the assignment

Propagate
l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ∈ M l, l /∈ M

M := M l

Note: When convenient, treat M as a set

Note: Clauses are treated modulo ACI of ∨

Decide
l ∈ Lit(F) l, l /∈ M

M := M • l

Note: Lit(F) def
= {l | l literal of F} ∪ {l | l literal of F}

46

transition rules for the original dpll

Extending the assignment

Propagate
l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ∈ M l, l /∈ M

M := M l

Note: When convenient, treat M as a set

Note: Clauses are treated modulo ACI of ∨

Decide
l ∈ Lit(F) l, l /∈ M

M := M • l

Note: Lit(F) def
= {l | l literal of F} ∪ {l | l literal of F}

46

transition rules for the original dpll

Repairing the assignment

Fail
l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M • /∈ M

fail

Backtrack

l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M M = M • l N • /∈ N
M := M l

Note: Last premise of Backtrack enforces chronological backtracking

47

transition rules for the original dpll

Repairing the assignment

Fail
l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M • /∈ M

fail

Backtrack

l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M M = M • l N • /∈ N
M := M l

Note: Last premise of Backtrack enforces chronological backtracking

47

from dpll to cdcl solvers (1)

To model conflict-driven backjumping and learning, add to
states a third component C whose value is either no or a
conflict clause

States: fail or ⟨M, F, C⟩

Initial state:

∙ ⟨(), F0,no⟩, where F0 is to be checked for satisfiability

Expected final states:

∙ fail if F0 is unsatisfiable
∙ ⟨M,G,no⟩ otherwise, where
∙ G is equivalent to F0 and
∙ M satisfies G

48

from dpll to cdcl solvers (1)

To model conflict-driven backjumping and learning, add to
states a third component C whose value is either no or a
conflict clause

States: fail or ⟨M, F, C⟩

Initial state:

∙ ⟨(), F0,no⟩, where F0 is to be checked for satisfiability

Expected final states:

∙ fail if F0 is unsatisfiable
∙ ⟨M,G,no⟩ otherwise, where
∙ G is equivalent to F0 and
∙ M satisfies G

48

from dpll to cdcl solvers (2)

Replace Backtrack with

Conflict
C = no l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M

C := l1 ∨ · · · ∨ ln

Explain
C = l ∨ D l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ≺M l

C := l1 ∨ · · · ∨ ln ∨ D

Backjump
C = l1 ∨ · · · ∨ ln ∨ l lev l1, . . . , lev ln ≤ i < lev l

C := no M := M[i] l

Maintain invariant: F |=p C and M |=p ¬C when C ̸= no

Note: |=p denotes propositional entailment

49

from dpll to cdcl solvers (2)

Replace Backtrack with

Conflict
C = no l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M

C := l1 ∨ · · · ∨ ln

Explain
C = l ∨ D l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ≺M l

C := l1 ∨ · · · ∨ ln ∨ D

Backjump
C = l1 ∨ · · · ∨ ln ∨ l lev l1, . . . , lev ln ≤ i < lev l

C := no M := M[i] l

Note: l ≺M l′ if l occurs before l′ in M
lev l = i iff l occurs in decision level i of M

Maintain invariant: F |=p C and M |=p ¬C when C ̸= no

Note: |=p denotes propositional entailment

49

from dpll to cdcl solvers (2)

Replace Backtrack with

Conflict
C = no l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M

C := l1 ∨ · · · ∨ ln

Explain
C = l ∨ D l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ≺M l

C := l1 ∨ · · · ∨ ln ∨ D

Backjump
C = l1 ∨ · · · ∨ ln ∨ l lev l1, . . . , lev ln ≤ i < lev l

C := no M := M[i] l

Maintain invariant: F |=p C and M |=p ¬C when C ̸= no

Note: |=p denotes propositional entailment

49

from dpll to cdcl solvers (3)

Modify Fail to

Fail
C ̸= no • /∈ M

fail

50

from dpll to cdcl solvers (3)

Modify Fail to

Fail
C ̸= no • /∈ M

fail

50

execution example

F := {1, 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 1 ∨ 5 ∨ 7, 2 ∨ 5 ∨ 6 ∨ 7}

M F C rule
F no

1 F no by Propagate
1 2 F no by Propagate

1 2 • 3 F no by Decide
1 2 • 3 4 F no by Propagate

1 2 • 3 4 • 5 F no by Decide
1 2 • 3 4 • 5 6 F no by Propagate

1 2 • 3 4 • 5 6 7 F no by Propagate
1 2 • 3 4 • 5 6 7 F 2 ∨ 5 ∨ 6 ∨ 7 by Conflict
1 2 • 3 4 • 5 6 7 F 1 ∨ 2 ∨ 5 ∨ 6 by Explain with 1 ∨ 5 ∨ 7
1 2 • 3 4 • 5 6 7 F 1 ∨ 2 ∨ 5 by Explain with 5 ∨ 6

1 2 5 F no by Backjump
1 2 5 • 3 F no by Decide

· · ·

51

execution example

F := {1, 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 1 ∨ 5 ∨ 7, 2 ∨ 5 ∨ 6 ∨ 7}

M F C rule
F no

1 F no by Propagate

1 2 F no by Propagate
1 2 • 3 F no by Decide

1 2 • 3 4 F no by Propagate
1 2 • 3 4 • 5 F no by Decide

1 2 • 3 4 • 5 6 F no by Propagate
1 2 • 3 4 • 5 6 7 F no by Propagate
1 2 • 3 4 • 5 6 7 F 2 ∨ 5 ∨ 6 ∨ 7 by Conflict
1 2 • 3 4 • 5 6 7 F 1 ∨ 2 ∨ 5 ∨ 6 by Explain with 1 ∨ 5 ∨ 7
1 2 • 3 4 • 5 6 7 F 1 ∨ 2 ∨ 5 by Explain with 5 ∨ 6

1 2 5 F no by Backjump
1 2 5 • 3 F no by Decide

· · ·

51

execution example

F := {1, 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 1 ∨ 5 ∨ 7, 2 ∨ 5 ∨ 6 ∨ 7}

M F C rule
F no

1 F no by Propagate
1 2 F no by Propagate

1 2 • 3 F no by Decide
1 2 • 3 4 F no by Propagate

1 2 • 3 4 • 5 F no by Decide
1 2 • 3 4 • 5 6 F no by Propagate

1 2 • 3 4 • 5 6 7 F no by Propagate
1 2 • 3 4 • 5 6 7 F 2 ∨ 5 ∨ 6 ∨ 7 by Conflict
1 2 • 3 4 • 5 6 7 F 1 ∨ 2 ∨ 5 ∨ 6 by Explain with 1 ∨ 5 ∨ 7
1 2 • 3 4 • 5 6 7 F 1 ∨ 2 ∨ 5 by Explain with 5 ∨ 6

1 2 5 F no by Backjump
1 2 5 • 3 F no by Decide

· · ·

51

execution example

F := {1, 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 1 ∨ 5 ∨ 7, 2 ∨ 5 ∨ 6 ∨ 7}

M F C rule
F no

1 F no by Propagate
1 2 F no by Propagate

1 2 • 3 F no by Decide

1 2 • 3 4 F no by Propagate
1 2 • 3 4 • 5 F no by Decide

1 2 • 3 4 • 5 6 F no by Propagate
1 2 • 3 4 • 5 6 7 F no by Propagate
1 2 • 3 4 • 5 6 7 F 2 ∨ 5 ∨ 6 ∨ 7 by Conflict
1 2 • 3 4 • 5 6 7 F 1 ∨ 2 ∨ 5 ∨ 6 by Explain with 1 ∨ 5 ∨ 7
1 2 • 3 4 • 5 6 7 F 1 ∨ 2 ∨ 5 by Explain with 5 ∨ 6

1 2 5 F no by Backjump
1 2 5 • 3 F no by Decide

· · ·

51

execution example

F := {1, 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 1 ∨ 5 ∨ 7, 2 ∨ 5 ∨ 6 ∨ 7}

M F C rule
F no

1 F no by Propagate
1 2 F no by Propagate

1 2 • 3 F no by Decide
1 2 • 3 4 F no by Propagate

1 2 • 3 4 • 5 F no by Decide
1 2 • 3 4 • 5 6 F no by Propagate

1 2 • 3 4 • 5 6 7 F no by Propagate
1 2 • 3 4 • 5 6 7 F 2 ∨ 5 ∨ 6 ∨ 7 by Conflict
1 2 • 3 4 • 5 6 7 F 1 ∨ 2 ∨ 5 ∨ 6 by Explain with 1 ∨ 5 ∨ 7
1 2 • 3 4 • 5 6 7 F 1 ∨ 2 ∨ 5 by Explain with 5 ∨ 6

1 2 5 F no by Backjump
1 2 5 • 3 F no by Decide

· · ·

51

execution example

F := {1, 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 1 ∨ 5 ∨ 7, 2 ∨ 5 ∨ 6 ∨ 7}

M F C rule
F no

1 F no by Propagate
1 2 F no by Propagate

1 2 • 3 F no by Decide
1 2 • 3 4 F no by Propagate

1 2 • 3 4 • 5 F no by Decide

1 2 • 3 4 • 5 6 F no by Propagate
1 2 • 3 4 • 5 6 7 F no by Propagate
1 2 • 3 4 • 5 6 7 F 2 ∨ 5 ∨ 6 ∨ 7 by Conflict
1 2 • 3 4 • 5 6 7 F 1 ∨ 2 ∨ 5 ∨ 6 by Explain with 1 ∨ 5 ∨ 7
1 2 • 3 4 • 5 6 7 F 1 ∨ 2 ∨ 5 by Explain with 5 ∨ 6

1 2 5 F no by Backjump
1 2 5 • 3 F no by Decide

· · ·

51

execution example

F := {1, 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 1 ∨ 5 ∨ 7, 2 ∨ 5 ∨ 6 ∨ 7}

M F C rule
F no

1 F no by Propagate
1 2 F no by Propagate

1 2 • 3 F no by Decide
1 2 • 3 4 F no by Propagate

1 2 • 3 4 • 5 F no by Decide
1 2 • 3 4 • 5 6 F no by Propagate

1 2 • 3 4 • 5 6 7 F no by Propagate
1 2 • 3 4 • 5 6 7 F 2 ∨ 5 ∨ 6 ∨ 7 by Conflict
1 2 • 3 4 • 5 6 7 F 1 ∨ 2 ∨ 5 ∨ 6 by Explain with 1 ∨ 5 ∨ 7
1 2 • 3 4 • 5 6 7 F 1 ∨ 2 ∨ 5 by Explain with 5 ∨ 6

1 2 5 F no by Backjump
1 2 5 • 3 F no by Decide

· · ·

51

execution example

F := {1, 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 1 ∨ 5 ∨ 7, 2 ∨ 5 ∨ 6 ∨ 7}

M F C rule
F no

1 F no by Propagate
1 2 F no by Propagate

1 2 • 3 F no by Decide
1 2 • 3 4 F no by Propagate

1 2 • 3 4 • 5 F no by Decide
1 2 • 3 4 • 5 6 F no by Propagate

1 2 • 3 4 • 5 6 7 F no by Propagate

1 2 • 3 4 • 5 6 7 F 2 ∨ 5 ∨ 6 ∨ 7 by Conflict
1 2 • 3 4 • 5 6 7 F 1 ∨ 2 ∨ 5 ∨ 6 by Explain with 1 ∨ 5 ∨ 7
1 2 • 3 4 • 5 6 7 F 1 ∨ 2 ∨ 5 by Explain with 5 ∨ 6

1 2 5 F no by Backjump
1 2 5 • 3 F no by Decide

· · ·

51

execution example

F := {1, 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 1 ∨ 5 ∨ 7, 2 ∨ 5 ∨ 6 ∨ 7}

M F C rule
F no

1 F no by Propagate
1 2 F no by Propagate

1 2 • 3 F no by Decide
1 2 • 3 4 F no by Propagate

1 2 • 3 4 • 5 F no by Decide
1 2 • 3 4 • 5 6 F no by Propagate

1 2 • 3 4 • 5 6 7 F no by Propagate
1 2 • 3 4 • 5 6 7 F 2 ∨ 5 ∨ 6 ∨ 7 by Conflict

1 2 • 3 4 • 5 6 7 F 1 ∨ 2 ∨ 5 ∨ 6 by Explain with 1 ∨ 5 ∨ 7
1 2 • 3 4 • 5 6 7 F 1 ∨ 2 ∨ 5 by Explain with 5 ∨ 6

1 2 5 F no by Backjump
1 2 5 • 3 F no by Decide

· · ·

51

execution example

F := {1, 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 1 ∨ 5 ∨ 7, 2 ∨ 5 ∨ 6 ∨ 7}

M F C rule
F no

1 F no by Propagate
1 2 F no by Propagate

1 2 • 3 F no by Decide
1 2 • 3 4 F no by Propagate

1 2 • 3 4 • 5 F no by Decide
1 2 • 3 4 • 5 6 F no by Propagate

1 2 • 3 4 • 5 6 7 F no by Propagate
1 2 • 3 4 • 5 6 7 F 2 ∨ 5 ∨ 6 ∨ 7 by Conflict
1 2 • 3 4 • 5 6 7 F 1 ∨ 2 ∨ 5 ∨ 6 by Explain with 1 ∨ 5 ∨ 7

1 2 • 3 4 • 5 6 7 F 1 ∨ 2 ∨ 5 by Explain with 5 ∨ 6
1 2 5 F no by Backjump

1 2 5 • 3 F no by Decide
· · ·

51

execution example

F := {1, 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 1 ∨ 5 ∨ 7, 2 ∨ 5 ∨ 6 ∨ 7}

M F C rule
F no

1 F no by Propagate
1 2 F no by Propagate

1 2 • 3 F no by Decide
1 2 • 3 4 F no by Propagate

1 2 • 3 4 • 5 F no by Decide
1 2 • 3 4 • 5 6 F no by Propagate

1 2 • 3 4 • 5 6 7 F no by Propagate
1 2 • 3 4 • 5 6 7 F 2 ∨ 5 ∨ 6 ∨ 7 by Conflict
1 2 • 3 4 • 5 6 7 F 1 ∨ 2 ∨ 5 ∨ 6 by Explain with 1 ∨ 5 ∨ 7
1 2 • 3 4 • 5 6 7 F 1 ∨ 2 ∨ 5 by Explain with 5 ∨ 6

1 2 5 F no by Backjump
1 2 5 • 3 F no by Decide

· · ·

51

execution example

F := {1, 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 1 ∨ 5 ∨ 7, 2 ∨ 5 ∨ 6 ∨ 7}

M F C rule
F no

1 F no by Propagate
1 2 F no by Propagate

1 2 • 3 F no by Decide
1 2 • 3 4 F no by Propagate

1 2 • 3 4 • 5 F no by Decide
1 2 • 3 4 • 5 6 F no by Propagate

1 2 • 3 4 • 5 6 7 F no by Propagate
1 2 • 3 4 • 5 6 7 F 2 ∨ 5 ∨ 6 ∨ 7 by Conflict
1 2 • 3 4 • 5 6 7 F 1 ∨ 2 ∨ 5 ∨ 6 by Explain with 1 ∨ 5 ∨ 7
1 2 • 3 4 • 5 6 7 F 1 ∨ 2 ∨ 5 by Explain with 5 ∨ 6

1 2 5 F no by Backjump

1 2 5 • 3 F no by Decide
· · ·

51

execution example

F := {1, 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 1 ∨ 5 ∨ 7, 2 ∨ 5 ∨ 6 ∨ 7}

M F C rule
F no

1 F no by Propagate
1 2 F no by Propagate

1 2 • 3 F no by Decide
1 2 • 3 4 F no by Propagate

1 2 • 3 4 • 5 F no by Decide
1 2 • 3 4 • 5 6 F no by Propagate

1 2 • 3 4 • 5 6 7 F no by Propagate
1 2 • 3 4 • 5 6 7 F 2 ∨ 5 ∨ 6 ∨ 7 by Conflict
1 2 • 3 4 • 5 6 7 F 1 ∨ 2 ∨ 5 ∨ 6 by Explain with 1 ∨ 5 ∨ 7
1 2 • 3 4 • 5 6 7 F 1 ∨ 2 ∨ 5 by Explain with 5 ∨ 6

1 2 5 F no by Backjump
1 2 5 • 3 F no by Decide

· · ·

51

from dpll to cdcl solvers (4)

Also add

Learn
F |=p C C /∈ F
F := F ∪ {C}

Forget
C = no F = G ∪ {C} G |=p C

F := G

Restart
M := M[0] C := no

Note: Learn can be applied to any clause stored in C when C ̸= no

52

modeling modern sat solvers

At the core, current CDCL SAT solvers are implementations of
the transition system with rules

Propagate, Decide,

Conflict, Explain, Backjump,

Learn, Forget, Restart

Basic DPLL def
=

{ Propagate, Decide, Conflict, Explain, Backjump }

DPLL def
= Basic DPLL + { Learn, Forget, Restart }

53

modeling modern sat solvers

At the core, current CDCL SAT solvers are implementations of
the transition system with rules

Propagate, Decide,

Conflict, Explain, Backjump,

Learn, Forget, Restart

Basic DPLL def
=

{ Propagate, Decide, Conflict, Explain, Backjump }

DPLL def
= Basic DPLL + { Learn, Forget, Restart }

53

the basic dpll system – correctness

Some terminology:

Irreducible state: state for which no Basic DPLL rules apply

Execution: sequence of transitions allowed by the rules and
starting with M = ∅ and C = no

Exhausted execution: execution ending in an irreducible state

Proposition (Soundness) For every exhausted execution
starting with F = F0 and ending with fail, the clause set F0 is
unsatisfiable.

Proposition (Completeness) For every exhausted execution
starting with F = F0 and ending with C = no, the clause set F0
is satisfied by M.

54

the basic dpll system – correctness

Some terminology:

Irreducible state: state for which no Basic DPLL rules apply

Execution: sequence of transitions allowed by the rules and
starting with M = ∅ and C = no

Exhausted execution: execution ending in an irreducible state

Proposition (Strong Termination) Every execution in Basic DPLL
is finite.

Note: This is not so immediate, because of Backjump.

Proposition (Soundness) For every exhausted execution
starting with F = F0 and ending with fail, the clause set F0 is
unsatisfiable.

Proposition (Completeness) For every exhausted execution
starting with F = F0 and ending with C = no, the clause set F0
is satisfied by M.

54

the basic dpll system – correctness

Some terminology:

Irreducible state: state for which no Basic DPLL rules apply

Execution: sequence of transitions allowed by the rules and
starting with M = ∅ and C = no

Exhausted execution: execution ending in an irreducible state

Proposition (Strong Termination) Every execution in Basic DPLL
is finite.

Lemma Every exhausted execution ends with either C = no or
fail.

Proposition (Soundness) For every exhausted execution
starting with F = F0 and ending with fail, the clause set F0 is
unsatisfiable.

Proposition (Completeness) For every exhausted execution
starting with F = F0 and ending with C = no, the clause set F0
is satisfied by M.

54

the basic dpll system – correctness

Some terminology:

Irreducible state: state for which no Basic DPLL rules apply

Execution: sequence of transitions allowed by the rules and
starting with M = ∅ and C = no

Exhausted execution: execution ending in an irreducible state

Proposition (Soundness) For every exhausted execution
starting with F = F0 and ending with fail, the clause set F0 is
unsatisfiable.

Proposition (Completeness) For every exhausted execution
starting with F = F0 and ending with C = no, the clause set F0
is satisfied by M. 54

the dpll system – strategies

∙ Applying
∙ one Basic DPLL rule between each two Learn applications and
∙ Restart less and less often
ensures termination

∙ A common basic strategy applies the rules with the following
priorities:

1. If n > 0 conflicts have been found so far,
increase n and apply Restart

2. If a clause is falsified by M, apply Conflict
3. Keep applying Explain until Backjump is applicable
4. Apply Learn
5. Apply Backjump
6. Apply Propagate to completion
7. Apply Decide

55

the dpll system – strategies

∙ Applying
∙ one Basic DPLL rule between each two Learn applications and
∙ Restart less and less often
ensures termination

∙ A common basic strategy applies the rules with the following
priorities:
1. If n > 0 conflicts have been found so far,
increase n and apply Restart

2. If a clause is falsified by M, apply Conflict
3. Keep applying Explain until Backjump is applicable
4. Apply Learn
5. Apply Backjump
6. Apply Propagate to completion
7. Apply Decide

55

the dpll system – strategies

∙ Applying
∙ one Basic DPLL rule between each two Learn applications and
∙ Restart less and less often
ensures termination

∙ A common basic strategy applies the rules with the following
priorities:
1. If n > 0 conflicts have been found so far,
increase n and apply Restart

2. If a clause is falsified by M, apply Conflict

3. Keep applying Explain until Backjump is applicable
4. Apply Learn
5. Apply Backjump
6. Apply Propagate to completion
7. Apply Decide

55

the dpll system – strategies

∙ Applying
∙ one Basic DPLL rule between each two Learn applications and
∙ Restart less and less often
ensures termination

∙ A common basic strategy applies the rules with the following
priorities:
1. If n > 0 conflicts have been found so far,
increase n and apply Restart

2. If a clause is falsified by M, apply Conflict
3. Keep applying Explain until Backjump is applicable

4. Apply Learn
5. Apply Backjump
6. Apply Propagate to completion
7. Apply Decide

55

the dpll system – strategies

∙ Applying
∙ one Basic DPLL rule between each two Learn applications and
∙ Restart less and less often
ensures termination

∙ A common basic strategy applies the rules with the following
priorities:
1. If n > 0 conflicts have been found so far,
increase n and apply Restart

2. If a clause is falsified by M, apply Conflict
3. Keep applying Explain until Backjump is applicable
4. Apply Learn

5. Apply Backjump
6. Apply Propagate to completion
7. Apply Decide

55

the dpll system – strategies

∙ Applying
∙ one Basic DPLL rule between each two Learn applications and
∙ Restart less and less often
ensures termination

∙ A common basic strategy applies the rules with the following
priorities:
1. If n > 0 conflicts have been found so far,
increase n and apply Restart

2. If a clause is falsified by M, apply Conflict
3. Keep applying Explain until Backjump is applicable
4. Apply Learn
5. Apply Backjump

6. Apply Propagate to completion
7. Apply Decide

55

the dpll system – strategies

∙ Applying
∙ one Basic DPLL rule between each two Learn applications and
∙ Restart less and less often
ensures termination

∙ A common basic strategy applies the rules with the following
priorities:
1. If n > 0 conflicts have been found so far,
increase n and apply Restart

2. If a clause is falsified by M, apply Conflict
3. Keep applying Explain until Backjump is applicable
4. Apply Learn
5. Apply Backjump
6. Apply Propagate to completion

7. Apply Decide

55

the dpll system – strategies

∙ Applying
∙ one Basic DPLL rule between each two Learn applications and
∙ Restart less and less often
ensures termination

∙ A common basic strategy applies the rules with the following
priorities:
1. If n > 0 conflicts have been found so far,
increase n and apply Restart

2. If a clause is falsified by M, apply Conflict
3. Keep applying Explain until Backjump is applicable
4. Apply Learn
5. Apply Backjump
6. Apply Propagate to completion
7. Apply Decide

55

from sat to smt

Same states and transitions but

∙ F contains quantifier-free clauses in some theory T

∙ M is a sequence of theory literals and decision points

∙ the DPLL system is augmented with rules

T-Conflict, T-Propagate, T-Explain

∙ maintains invariant: F |=T C and M |=p ¬C when C ̸= no

Def. F |=T G iff every model of T that satisfies F satisfies G as
well

56

smt-level rules

Fix a theory T

T-Conflict
C = no l1, . . . , ln ∈ M l1, . . . , ln |=T ⊥

C := l1 ∨ · · · ∨ ln

T-Propagate
l ∈ Lit(F) M |=T l l, l /∈ M

M := M l

T-Explain
C = l ∨ D l1, . . . , ln |=T l l1, . . . , ln ≺M l

C := l1 ∨ · · · ∨ ln ∨ D

Note: ⊥ = empty clause

Note: |=T decided by theory solver

57

smt-level rules

Fix a theory T

T-Conflict
C = no l1, . . . , ln ∈ M l1, . . . , ln |=T ⊥

C := l1 ∨ · · · ∨ ln

T-Propagate
l ∈ Lit(F) M |=T l l, l /∈ M

M := M l

T-Explain
C = l ∨ D l1, . . . , ln |=T l l1, . . . , ln ≺M l

C := l1 ∨ · · · ∨ ln ∨ D

Note: ⊥ = empty clause

Note: |=T decided by theory solver

57

smt-level rules

Fix a theory T

T-Conflict
C = no l1, . . . , ln ∈ M l1, . . . , ln |=T ⊥

C := l1 ∨ · · · ∨ ln

T-Propagate
l ∈ Lit(F) M |=T l l, l /∈ M

M := M l

T-Explain
C = l ∨ D l1, . . . , ln |=T l l1, . . . , ln ≺M l

C := l1 ∨ · · · ∨ ln ∨ D

Note: ⊥ = empty clause

Note: |=T decided by theory solver

57

modeling the very lazy theory approach

T-Conflict is enough to model the naive integration of SAT
solvers and theory solvers seen in the earlier UF example

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) ̸= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c ̸= d︸ ︷︷ ︸
4

M F C rule
1, 2 ∨ 3, 4 no

1 4 1, 2 ∨ 3, 4 no by Propagate+
1 4 • 2 1, 2 ∨ 3, 4 no by Decide
1 4 • 2 1, 2 ∨ 3, 4 1 ∨ 2 ∨ 4 by T-Conflict
1 4 • 2 , 1 ∨ 2 ∨ 4 1 ∨ 2 ∨ 4 by Learn

1 4 , 1 ∨ 2 ∨ 4 no by Restart
1 4 2 3 , 1 ∨ 2 ∨ 4 no by Propagate+
1 4 2 3 , 1 ∨ 2 ∨ 4, 1 ∨ 3 ∨ 4 1 ∨ 3 ∨ 4 by T-Conflict, Learn
fail by Fail

58

modeling the very lazy theory approach

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) ̸= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c ̸= d︸ ︷︷ ︸
4

M F C rule
1, 2 ∨ 3, 4 no

1 4 1, 2 ∨ 3, 4 no by Propagate+
1 4 • 2 1, 2 ∨ 3, 4 no by Decide
1 4 • 2 1, 2 ∨ 3, 4 1 ∨ 2 ∨ 4 by T-Conflict
1 4 • 2 , 1 ∨ 2 ∨ 4 1 ∨ 2 ∨ 4 by Learn

1 4 , 1 ∨ 2 ∨ 4 no by Restart
1 4 2 3 , 1 ∨ 2 ∨ 4 no by Propagate+
1 4 2 3 , 1 ∨ 2 ∨ 4, 1 ∨ 3 ∨ 4 1 ∨ 3 ∨ 4 by T-Conflict, Learn
fail by Fail

58

modeling the very lazy theory approach

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) ̸= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c ̸= d︸ ︷︷ ︸
4

M F C rule
1, 2 ∨ 3, 4 no

1 4 1, 2 ∨ 3, 4 no by Propagate+
1 4 • 2 1, 2 ∨ 3, 4 no by Decide
1 4 • 2 1, 2 ∨ 3, 4 1 ∨ 2 ∨ 4 by T-Conflict
1 4 • 2 , 1 ∨ 2 ∨ 4 1 ∨ 2 ∨ 4 by Learn

1 4 , 1 ∨ 2 ∨ 4 no by Restart
1 4 2 3 , 1 ∨ 2 ∨ 4 no by Propagate+
1 4 2 3 , 1 ∨ 2 ∨ 4, 1 ∨ 3 ∨ 4 1 ∨ 3 ∨ 4 by T-Conflict, Learn
fail by Fail

58

modeling the very lazy theory approach

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) ̸= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c ̸= d︸ ︷︷ ︸
4

M F C rule
1, 2 ∨ 3, 4 no

1 4 1, 2 ∨ 3, 4 no by Propagate+

1 4 • 2 1, 2 ∨ 3, 4 no by Decide
1 4 • 2 1, 2 ∨ 3, 4 1 ∨ 2 ∨ 4 by T-Conflict
1 4 • 2 , 1 ∨ 2 ∨ 4 1 ∨ 2 ∨ 4 by Learn

1 4 , 1 ∨ 2 ∨ 4 no by Restart
1 4 2 3 , 1 ∨ 2 ∨ 4 no by Propagate+
1 4 2 3 , 1 ∨ 2 ∨ 4, 1 ∨ 3 ∨ 4 1 ∨ 3 ∨ 4 by T-Conflict, Learn
fail by Fail

58

modeling the very lazy theory approach

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) ̸= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c ̸= d︸ ︷︷ ︸
4

M F C rule
1, 2 ∨ 3, 4 no

1 4 1, 2 ∨ 3, 4 no by Propagate+
1 4 • 2 1, 2 ∨ 3, 4 no by Decide

1 4 • 2 1, 2 ∨ 3, 4 1 ∨ 2 ∨ 4 by T-Conflict
1 4 • 2 , 1 ∨ 2 ∨ 4 1 ∨ 2 ∨ 4 by Learn

1 4 , 1 ∨ 2 ∨ 4 no by Restart
1 4 2 3 , 1 ∨ 2 ∨ 4 no by Propagate+
1 4 2 3 , 1 ∨ 2 ∨ 4, 1 ∨ 3 ∨ 4 1 ∨ 3 ∨ 4 by T-Conflict, Learn
fail by Fail

58

modeling the very lazy theory approach

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) ̸= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c ̸= d︸ ︷︷ ︸
4

M F C rule
1, 2 ∨ 3, 4 no

1 4 1, 2 ∨ 3, 4 no by Propagate+
1 4 • 2 1, 2 ∨ 3, 4 no by Decide
1 4 • 2 1, 2 ∨ 3, 4 1 ∨ 2 ∨ 4 by T-Conflict

1 4 • 2 , 1 ∨ 2 ∨ 4 1 ∨ 2 ∨ 4 by Learn
1 4 , 1 ∨ 2 ∨ 4 no by Restart

1 4 2 3 , 1 ∨ 2 ∨ 4 no by Propagate+
1 4 2 3 , 1 ∨ 2 ∨ 4, 1 ∨ 3 ∨ 4 1 ∨ 3 ∨ 4 by T-Conflict, Learn
fail by Fail

58

modeling the very lazy theory approach

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) ̸= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c ̸= d︸ ︷︷ ︸
4

M F C rule
1, 2 ∨ 3, 4 no

1 4 1, 2 ∨ 3, 4 no by Propagate+
1 4 • 2 1, 2 ∨ 3, 4 no by Decide
1 4 • 2 1, 2 ∨ 3, 4 1 ∨ 2 ∨ 4 by T-Conflict
1 4 • 2 , 1 ∨ 2 ∨ 4 1 ∨ 2 ∨ 4 by Learn

1 4 , 1 ∨ 2 ∨ 4 no by Restart
1 4 2 3 , 1 ∨ 2 ∨ 4 no by Propagate+
1 4 2 3 , 1 ∨ 2 ∨ 4, 1 ∨ 3 ∨ 4 1 ∨ 3 ∨ 4 by T-Conflict, Learn
fail by Fail

58

modeling the very lazy theory approach

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) ̸= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c ̸= d︸ ︷︷ ︸
4

M F C rule
1, 2 ∨ 3, 4 no

1 4 1, 2 ∨ 3, 4 no by Propagate+
1 4 • 2 1, 2 ∨ 3, 4 no by Decide
1 4 • 2 1, 2 ∨ 3, 4 1 ∨ 2 ∨ 4 by T-Conflict
1 4 • 2 , 1 ∨ 2 ∨ 4 1 ∨ 2 ∨ 4 by Learn

1 4 , 1 ∨ 2 ∨ 4 no by Restart

1 4 2 3 , 1 ∨ 2 ∨ 4 no by Propagate+
1 4 2 3 , 1 ∨ 2 ∨ 4, 1 ∨ 3 ∨ 4 1 ∨ 3 ∨ 4 by T-Conflict, Learn
fail by Fail

58

modeling the very lazy theory approach

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) ̸= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c ̸= d︸ ︷︷ ︸
4

M F C rule
1, 2 ∨ 3, 4 no

1 4 1, 2 ∨ 3, 4 no by Propagate+
1 4 • 2 1, 2 ∨ 3, 4 no by Decide
1 4 • 2 1, 2 ∨ 3, 4 1 ∨ 2 ∨ 4 by T-Conflict
1 4 • 2 , 1 ∨ 2 ∨ 4 1 ∨ 2 ∨ 4 by Learn

1 4 , 1 ∨ 2 ∨ 4 no by Restart
1 4 2 3 , 1 ∨ 2 ∨ 4 no by Propagate+

1 4 2 3 , 1 ∨ 2 ∨ 4, 1 ∨ 3 ∨ 4 1 ∨ 3 ∨ 4 by T-Conflict, Learn
fail by Fail

58

modeling the very lazy theory approach

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) ̸= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c ̸= d︸ ︷︷ ︸
4

M F C rule
1, 2 ∨ 3, 4 no

1 4 1, 2 ∨ 3, 4 no by Propagate+
1 4 • 2 1, 2 ∨ 3, 4 no by Decide
1 4 • 2 1, 2 ∨ 3, 4 1 ∨ 2 ∨ 4 by T-Conflict
1 4 • 2 , 1 ∨ 2 ∨ 4 1 ∨ 2 ∨ 4 by Learn

1 4 , 1 ∨ 2 ∨ 4 no by Restart
1 4 2 3 , 1 ∨ 2 ∨ 4 no by Propagate+
1 4 2 3 , 1 ∨ 2 ∨ 4, 1 ∨ 3 ∨ 4 1 ∨ 3 ∨ 4 by T-Conflict, Learn

fail by Fail

58

modeling the very lazy theory approach

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) ̸= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c ̸= d︸ ︷︷ ︸
4

M F C rule
1, 2 ∨ 3, 4 no

1 4 1, 2 ∨ 3, 4 no by Propagate+
1 4 • 2 1, 2 ∨ 3, 4 no by Decide
1 4 • 2 1, 2 ∨ 3, 4 1 ∨ 2 ∨ 4 by T-Conflict
1 4 • 2 , 1 ∨ 2 ∨ 4 1 ∨ 2 ∨ 4 by Learn

1 4 , 1 ∨ 2 ∨ 4 no by Restart
1 4 2 3 , 1 ∨ 2 ∨ 4 no by Propagate+
1 4 2 3 , 1 ∨ 2 ∨ 4, 1 ∨ 3 ∨ 4 1 ∨ 3 ∨ 4 by T-Conflict, Learn
fail by Fail

58

a better lazy approach

The very lazy approach can be improved considerably with

∙ An on-line SAT engine,
which can accept new input clauses on the fly

∙ an incremental and explicating T-solver,
which can

1. check the T-satisfiability of M as it is extended and
2. identify a small T-unsatisfiable subset of M once M becomes
T-unsatisfiable

59

a better lazy approach

The very lazy approach can be improved considerably with

∙ An on-line SAT engine,
which can accept new input clauses on the fly

∙ an incremental and explicating T-solver,
which can

1. check the T-satisfiability of M as it is extended and
2. identify a small T-unsatisfiable subset of M once M becomes
T-unsatisfiable

59

a better lazy approach

The very lazy approach can be improved considerably with

∙ An on-line SAT engine,
which can accept new input clauses on the fly

∙ an incremental and explicating T-solver,
which can
1. check the T-satisfiability of M as it is extended and

2. identify a small T-unsatisfiable subset of M once M becomes
T-unsatisfiable

59

a better lazy approach

The very lazy approach can be improved considerably with

∙ An on-line SAT engine,
which can accept new input clauses on the fly

∙ an incremental and explicating T-solver,
which can
1. check the T-satisfiability of M as it is extended and
2. identify a small T-unsatisfiable subset of M once M becomes
T-unsatisfiable

59

a better lazy approach

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) ̸= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c ̸= d︸ ︷︷ ︸
4

M F C rule
1, 2 ∨ 3, 4 no

1 4 1, 2 ∨ 3, 4 no by Propagate+
1 4 • 2 1, 2 ∨ 3, 4 no by Decide
1 4 • 2 1, 2 ∨ 3, 4 1 ∨ 2 by T-Conflict
1 4 2 1, 2 ∨ 3, 4 no by Backjump

1 4 2 3 1, 2 ∨ 3, 4 no by Propagate
1 4 2 3 1, 2 ∨ 3, 4 1 ∨ 3 ∨ 4 by T-Conflict
fail by Fail

60

a better lazy approach

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) ̸= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c ̸= d︸ ︷︷ ︸
4

M F C rule
1, 2 ∨ 3, 4 no

1 4 1, 2 ∨ 3, 4 no by Propagate+
1 4 • 2 1, 2 ∨ 3, 4 no by Decide
1 4 • 2 1, 2 ∨ 3, 4 1 ∨ 2 by T-Conflict
1 4 2 1, 2 ∨ 3, 4 no by Backjump

1 4 2 3 1, 2 ∨ 3, 4 no by Propagate
1 4 2 3 1, 2 ∨ 3, 4 1 ∨ 3 ∨ 4 by T-Conflict
fail by Fail

60

a better lazy approach

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) ̸= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c ̸= d︸ ︷︷ ︸
4

M F C rule
1, 2 ∨ 3, 4 no

1 4 1, 2 ∨ 3, 4 no by Propagate+

1 4 • 2 1, 2 ∨ 3, 4 no by Decide
1 4 • 2 1, 2 ∨ 3, 4 1 ∨ 2 by T-Conflict
1 4 2 1, 2 ∨ 3, 4 no by Backjump

1 4 2 3 1, 2 ∨ 3, 4 no by Propagate
1 4 2 3 1, 2 ∨ 3, 4 1 ∨ 3 ∨ 4 by T-Conflict
fail by Fail

60

a better lazy approach

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) ̸= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c ̸= d︸ ︷︷ ︸
4

M F C rule
1, 2 ∨ 3, 4 no

1 4 1, 2 ∨ 3, 4 no by Propagate+
1 4 • 2 1, 2 ∨ 3, 4 no by Decide

1 4 • 2 1, 2 ∨ 3, 4 1 ∨ 2 by T-Conflict
1 4 2 1, 2 ∨ 3, 4 no by Backjump

1 4 2 3 1, 2 ∨ 3, 4 no by Propagate
1 4 2 3 1, 2 ∨ 3, 4 1 ∨ 3 ∨ 4 by T-Conflict
fail by Fail

60

a better lazy approach

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) ̸= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c ̸= d︸ ︷︷ ︸
4

M F C rule
1, 2 ∨ 3, 4 no

1 4 1, 2 ∨ 3, 4 no by Propagate+
1 4 • 2 1, 2 ∨ 3, 4 no by Decide
1 4 • 2 1, 2 ∨ 3, 4 1 ∨ 2 by T-Conflict

1 4 2 1, 2 ∨ 3, 4 no by Backjump
1 4 2 3 1, 2 ∨ 3, 4 no by Propagate
1 4 2 3 1, 2 ∨ 3, 4 1 ∨ 3 ∨ 4 by T-Conflict
fail by Fail

60

a better lazy approach

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) ̸= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c ̸= d︸ ︷︷ ︸
4

M F C rule
1, 2 ∨ 3, 4 no

1 4 1, 2 ∨ 3, 4 no by Propagate+
1 4 • 2 1, 2 ∨ 3, 4 no by Decide
1 4 • 2 1, 2 ∨ 3, 4 1 ∨ 2 by T-Conflict
1 4 2 1, 2 ∨ 3, 4 no by Backjump

1 4 2 3 1, 2 ∨ 3, 4 no by Propagate
1 4 2 3 1, 2 ∨ 3, 4 1 ∨ 3 ∨ 4 by T-Conflict
fail by Fail

60

a better lazy approach

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) ̸= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c ̸= d︸ ︷︷ ︸
4

M F C rule
1, 2 ∨ 3, 4 no

1 4 1, 2 ∨ 3, 4 no by Propagate+
1 4 • 2 1, 2 ∨ 3, 4 no by Decide
1 4 • 2 1, 2 ∨ 3, 4 1 ∨ 2 by T-Conflict
1 4 2 1, 2 ∨ 3, 4 no by Backjump

1 4 2 3 1, 2 ∨ 3, 4 no by Propagate

1 4 2 3 1, 2 ∨ 3, 4 1 ∨ 3 ∨ 4 by T-Conflict
fail by Fail

60

a better lazy approach

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) ̸= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c ̸= d︸ ︷︷ ︸
4

M F C rule
1, 2 ∨ 3, 4 no

1 4 1, 2 ∨ 3, 4 no by Propagate+
1 4 • 2 1, 2 ∨ 3, 4 no by Decide
1 4 • 2 1, 2 ∨ 3, 4 1 ∨ 2 by T-Conflict
1 4 2 1, 2 ∨ 3, 4 no by Backjump

1 4 2 3 1, 2 ∨ 3, 4 no by Propagate
1 4 2 3 1, 2 ∨ 3, 4 1 ∨ 3 ∨ 4 by T-Conflict

fail by Fail

60

a better lazy approach

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) ̸= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c ̸= d︸ ︷︷ ︸
4

M F C rule
1, 2 ∨ 3, 4 no

1 4 1, 2 ∨ 3, 4 no by Propagate+
1 4 • 2 1, 2 ∨ 3, 4 no by Decide
1 4 • 2 1, 2 ∨ 3, 4 1 ∨ 2 by T-Conflict
1 4 2 1, 2 ∨ 3, 4 no by Backjump

1 4 2 3 1, 2 ∨ 3, 4 no by Propagate
1 4 2 3 1, 2 ∨ 3, 4 1 ∨ 3 ∨ 4 by T-Conflict
fail by Fail

60

lazy approach – strategies

Ignoring Restart (for simplicity), a common strategy is to apply
the rules using the following priorities:

1. If a clause is falsified by the current assignment M,
apply Conflict

2. If M is T-unsatisfiable, apply T-Conflict
3. Apply Fail or Explain+Learn+Backjump as appropriate
4. Apply Propagate
5. Apply Decide

Note: Depending on the cost of checking the T-satisfiability of M,
Step (2) can be applied with lower frequency or priority

61

lazy approach – strategies

Ignoring Restart (for simplicity), a common strategy is to apply
the rules using the following priorities:

1. If a clause is falsified by the current assignment M,
apply Conflict

2. If M is T-unsatisfiable, apply T-Conflict
3. Apply Fail or Explain+Learn+Backjump as appropriate
4. Apply Propagate
5. Apply Decide

Note: Depending on the cost of checking the T-satisfiability of M,
Step (2) can be applied with lower frequency or priority

61

theory propagation

With T-Conflict as the only theory rule, the theory solver is
used just to validate the choices of the SAT engine

With T-Propagate and T-Explain, it can also be used to guide
the engine’s search [Tin02]

T-Propagate
l ∈ Lit(F) M |=T l l, l /∈ M

M := M l

T-Explain
C = l ∨ D l1, . . . , ln |=T l l1, . . . , ln ≺M l

C := l1 ∨ · · · ∨ ln ∨ D

62

theory propagation

With T-Conflict as the only theory rule, the theory solver is
used just to validate the choices of the SAT engine

With T-Propagate and T-Explain, it can also be used to guide
the engine’s search [Tin02]

T-Propagate
l ∈ Lit(F) M |=T l l, l /∈ M

M := M l

T-Explain
C = l ∨ D l1, . . . , ln |=T l l1, . . . , ln ≺M l

C := l1 ∨ · · · ∨ ln ∨ D

62

theory propagation example

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) ̸= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c ̸= d︸ ︷︷ ︸
4

M F C rule
1, 2 ∨ 3, 4 no

1 4 1, 2 ∨ 3, 4 no by Propagate+
1 4 2 1, 2 ∨ 3, 4 no by T-Propagate (1 |=T 2)

1 4 2 3 1, 2 ∨ 3, 4 no by T-Propagate (1, 4 |=T 3)
1 4 2 3 1, 2 ∨ 3, 4 2 ∨ 3 by Conflict
fail by Fail

Note: T-propagation eliminates search altogether in this case
no applications of Decide are needed

63

theory propagation example

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) ̸= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c ̸= d︸ ︷︷ ︸
4

M F C rule
1, 2 ∨ 3, 4 no

1 4 1, 2 ∨ 3, 4 no by Propagate+
1 4 2 1, 2 ∨ 3, 4 no by T-Propagate (1 |=T 2)

1 4 2 3 1, 2 ∨ 3, 4 no by T-Propagate (1, 4 |=T 3)
1 4 2 3 1, 2 ∨ 3, 4 2 ∨ 3 by Conflict
fail by Fail

Note: T-propagation eliminates search altogether in this case
no applications of Decide are needed

63

theory propagation example

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) ̸= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c ̸= d︸ ︷︷ ︸
4

M F C rule
1, 2 ∨ 3, 4 no

1 4 1, 2 ∨ 3, 4 no by Propagate+

1 4 2 1, 2 ∨ 3, 4 no by T-Propagate (1 |=T 2)
1 4 2 3 1, 2 ∨ 3, 4 no by T-Propagate (1, 4 |=T 3)
1 4 2 3 1, 2 ∨ 3, 4 2 ∨ 3 by Conflict
fail by Fail

Note: T-propagation eliminates search altogether in this case
no applications of Decide are needed

63

theory propagation example

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) ̸= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c ̸= d︸ ︷︷ ︸
4

M F C rule
1, 2 ∨ 3, 4 no

1 4 1, 2 ∨ 3, 4 no by Propagate+
1 4 2 1, 2 ∨ 3, 4 no by T-Propagate (1 |=T 2)

1 4 2 3 1, 2 ∨ 3, 4 no by T-Propagate (1, 4 |=T 3)
1 4 2 3 1, 2 ∨ 3, 4 2 ∨ 3 by Conflict
fail by Fail

Note: T-propagation eliminates search altogether in this case
no applications of Decide are needed

63

theory propagation example

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) ̸= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c ̸= d︸ ︷︷ ︸
4

M F C rule
1, 2 ∨ 3, 4 no

1 4 1, 2 ∨ 3, 4 no by Propagate+
1 4 2 1, 2 ∨ 3, 4 no by T-Propagate (1 |=T 2)

1 4 2 3 1, 2 ∨ 3, 4 no by T-Propagate (1, 4 |=T 3)

1 4 2 3 1, 2 ∨ 3, 4 2 ∨ 3 by Conflict
fail by Fail

Note: T-propagation eliminates search altogether in this case
no applications of Decide are needed

63

theory propagation example

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) ̸= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c ̸= d︸ ︷︷ ︸
4

M F C rule
1, 2 ∨ 3, 4 no

1 4 1, 2 ∨ 3, 4 no by Propagate+
1 4 2 1, 2 ∨ 3, 4 no by T-Propagate (1 |=T 2)

1 4 2 3 1, 2 ∨ 3, 4 no by T-Propagate (1, 4 |=T 3)
1 4 2 3 1, 2 ∨ 3, 4 2 ∨ 3 by Conflict

fail by Fail

Note: T-propagation eliminates search altogether in this case
no applications of Decide are needed

63

theory propagation example

g(a) = c︸ ︷︷ ︸
1

∧ f(g(a)) ̸= f(c)︸ ︷︷ ︸
2

∨ g(a) = d︸ ︷︷ ︸
3

∧ c ̸= d︸ ︷︷ ︸
4

M F C rule
1, 2 ∨ 3, 4 no

1 4 1, 2 ∨ 3, 4 no by Propagate+
1 4 2 1, 2 ∨ 3, 4 no by T-Propagate (1 |=T 2)

1 4 2 3 1, 2 ∨ 3, 4 no by T-Propagate (1, 4 |=T 3)
1 4 2 3 1, 2 ∨ 3, 4 2 ∨ 3 by Conflict
fail by Fail

Note: T-propagation eliminates search altogether in this case
no applications of Decide are needed

63

modeling modern lazy smt solvers

At the core, current lazy SMT solvers are implementations of
the transition system with rules

(1) Propagate, Decide, Conflict, Explain, Backjump, Fail

(2) T-Conflict, T-Propagate, T-Explain

(3) Learn, Forget, Restart

Basic DPLL Modulo Theories def
= (1) + (2)

DPLL Modulo Theories def
= (1) + (2) + (3)

64

modeling modern lazy smt solvers

At the core, current lazy SMT solvers are implementations of
the transition system with rules

(1) Propagate, Decide, Conflict, Explain, Backjump, Fail

(2) T-Conflict, T-Propagate, T-Explain

(3) Learn, Forget, Restart

Basic DPLL Modulo Theories def
= (1) + (2)

DPLL Modulo Theories def
= (1) + (2) + (3)

64

correctness

Updated terminology:

Irreducible state: state to which no Basic DPLL MT rules apply

Execution: sequence of transitions allowed by the rules and
starting with M = ∅ and C = no

Exhausted execution: execution ending in an irreducible state

Proposition (Soundness) For every exhausted execution
starting with F = F0 and ending with fail, the clause set F0 is
T-unsatisfiable.

Proposition (Completeness) For every exhausted execution
starting with F = F0 and ending with C = no, F0 is T-satisfiable;
specifically, M is T-satisfiable and M |=p F0.

65

correctness

Updated terminology:

Irreducible state: state to which no Basic DPLL MT rules apply

Execution: sequence of transitions allowed by the rules and
starting with M = ∅ and C = no

Exhausted execution: execution ending in an irreducible state

Proposition (Termination) Every execution in which
(a) Learn/Forget are applied only finitely many times and
(b) Restart is applied with increased periodicity
is finite.

Lemma Every exhausted execution ends with either C = no or
fail.

Proposition (Soundness) For every exhausted execution
starting with F = F0 and ending with fail, the clause set F0 is
T-unsatisfiable.

Proposition (Completeness) For every exhausted execution
starting with F = F0 and ending with C = no, F0 is T-satisfiable;
specifically, M is T-satisfiable and M |=p F0.

65

correctness

Updated terminology:

Irreducible state: state to which no Basic DPLL MT rules apply

Execution: sequence of transitions allowed by the rules and
starting with M = ∅ and C = no

Exhausted execution: execution ending in an irreducible state

Proposition (Soundness) For every exhausted execution
starting with F = F0 and ending with fail, the clause set F0 is
T-unsatisfiable.

Proposition (Completeness) For every exhausted execution
starting with F = F0 and ending with C = no, F0 is T-satisfiable;
specifically, M is T-satisfiable and M |=p F0. 65

dpll(t) architecture

The approach formalized so far can be implemented with a
simple architecture named DPLL(T) [GHN+04, NOT06]

DPLL(T) = DPLL(X) engine + T-solver

66

dpll(t) architecture

The approach formalized so far can be implemented with a
simple architecture named DPLL(T) [GHN+04, NOT06]

DPLL(T) = DPLL(X) engine + T-solver

DPLL(X):

∙ Very similar to a SAT solver, enumerates Boolean models
∙ Not allowed: pure literal, blocked literal detection, ...
∙ Required: incremental addition of clauses
∙ Desirable: partial model detection

66

dpll(t) architecture

The approach formalized so far can be implemented with a
simple architecture named DPLL(T) [GHN+04, NOT06]

DPLL(T) = DPLL(X) engine + T-solver

T-solver:

∙ Checks the T-satisfiability of conjunctions of literals
∙ Computes theory propagations
∙ Produces explanations of T-unsatisfiability/propagation
∙ Must be incremental and backtrackable

66

reasoning by cases in theory solvers

For certain theories, determining that a set M is T-unsatisfiable
requires reasoning by cases.

Example: T = the theory of arrays.

M = { r(w(a, i, x), j) ̸= x︸ ︷︷ ︸
1

, r(w(a, i, x), j) ̸= r(a, j)︸ ︷︷ ︸
2

}

i = j) Then, r(w(a, i, x), j) = x. Contradiction with 1.

i ̸= j) Then, r(w(a, i, x), j) = r(a, j). Contradiction with 2.

Conclusion: M is T-unsatisfiable

67

reasoning by cases in theory solvers

For certain theories, determining that a set M is T-unsatisfiable
requires reasoning by cases.

Example: T = the theory of arrays.

M = { r(w(a, i, x), j) ̸= x︸ ︷︷ ︸
1

, r(w(a, i, x), j) ̸= r(a, j)︸ ︷︷ ︸
2

}

i = j) Then, r(w(a, i, x), j) = x. Contradiction with 1.

i ̸= j) Then, r(w(a, i, x), j) = r(a, j). Contradiction with 2.

Conclusion: M is T-unsatisfiable

67

reasoning by cases in theory solvers

For certain theories, determining that a set M is T-unsatisfiable
requires reasoning by cases.

Example: T = the theory of arrays.

M = { r(w(a, i, x), j) ̸= x︸ ︷︷ ︸
1

, r(w(a, i, x), j) ̸= r(a, j)︸ ︷︷ ︸
2

}

i = j) Then, r(w(a, i, x), j) = x. Contradiction with 1.

i ̸= j) Then, r(w(a, i, x), j) = r(a, j). Contradiction with 2.

Conclusion: M is T-unsatisfiable

67

reasoning by cases in theory solvers

For certain theories, determining that a set M is T-unsatisfiable
requires reasoning by cases.

Example: T = the theory of arrays.

M = { r(w(a, i, x), j) ̸= x︸ ︷︷ ︸
1

, r(w(a, i, x), j) ̸= r(a, j)︸ ︷︷ ︸
2

}

i = j) Then, r(w(a, i, x), j) = x. Contradiction with 1.

i ̸= j) Then, r(w(a, i, x), j) = r(a, j). Contradiction with 2.

Conclusion: M is T-unsatisfiable

67

reasoning by cases in theory solvers

For certain theories, determining that a set M is T-unsatisfiable
requires reasoning by cases.

Example: T = the theory of arrays.

M = { r(w(a, i, x), j) ̸= x︸ ︷︷ ︸
1

, r(w(a, i, x), j) ̸= r(a, j)︸ ︷︷ ︸
2

}

i = j) Then, r(w(a, i, x), j) = x. Contradiction with 1.

i ̸= j) Then, r(w(a, i, x), j) = r(a, j). Contradiction with 2.

Conclusion: M is T-unsatisfiable

67

case splitting

A complete T-solver reasons by cases via (internal) case
splitting and backtracking mechanisms

An alternative is to lift case splitting and backtracking from the
T-solver to the SAT engine

Basic idea: encode case splits as sets of clauses and send
them as needed to the SAT engine for it to split on
them [BNOT06]

Possible benefits:

∙ All case-splitting is coordinated by the SAT engine
∙ Only have to implement case-splitting infrastructure in one
place

∙ Can learn a wider class of lemmas

68

case splitting

A complete T-solver reasons by cases via (internal) case
splitting and backtracking mechanisms

An alternative is to lift case splitting and backtracking from the
T-solver to the SAT engine

Basic idea: encode case splits as sets of clauses and send
them as needed to the SAT engine for it to split on
them [BNOT06]

Possible benefits:

∙ All case-splitting is coordinated by the SAT engine
∙ Only have to implement case-splitting infrastructure in one
place

∙ Can learn a wider class of lemmas

68

case splitting

A complete T-solver reasons by cases via (internal) case
splitting and backtracking mechanisms

An alternative is to lift case splitting and backtracking from the
T-solver to the SAT engine

Basic idea: encode case splits as sets of clauses and send
them as needed to the SAT engine for it to split on
them [BNOT06]

Possible benefits:

∙ All case-splitting is coordinated by the SAT engine
∙ Only have to implement case-splitting infrastructure in one
place

∙ Can learn a wider class of lemmas

68

case splitting

A complete T-solver reasons by cases via (internal) case
splitting and backtracking mechanisms

An alternative is to lift case splitting and backtracking from the
T-solver to the SAT engine

Basic idea: encode case splits as sets of clauses and send
them as needed to the SAT engine for it to split on
them [BNOT06]

Possible benefits:

∙ All case-splitting is coordinated by the SAT engine
∙ Only have to implement case-splitting infrastructure in one
place

∙ Can learn a wider class of lemmas 68

splitting on demand

Basic idea: encode case splits as a set of clauses and send
them as needed to the SAT engine for it to split on them

Basic Scenario:

M = {. . . , s = r(w(a, i, t), j)︸ ︷︷ ︸
s′

, . . .}

∙ Main SMT module: “Is M T-unsatisfiable?”

∙ T-solver: “I do not know yet, but it will help me if you
consider these theory lemmas:

s = s′ ∧ i = j⇒ s = t, s = s′ ∧ i ̸= j⇒ s = r(a, j) ”

69

splitting on demand

Basic idea: encode case splits as a set of clauses and send
them as needed to the SAT engine for it to split on them

Basic Scenario:

M = {. . . , s = r(w(a, i, t), j)︸ ︷︷ ︸
s′

, . . .}

∙ Main SMT module: “Is M T-unsatisfiable?”

∙ T-solver: “I do not know yet, but it will help me if you
consider these theory lemmas:

s = s′ ∧ i = j⇒ s = t, s = s′ ∧ i ̸= j⇒ s = r(a, j) ”

69

splitting on demand

Basic idea: encode case splits as a set of clauses and send
them as needed to the SAT engine for it to split on them

Basic Scenario:

M = {. . . , s = r(w(a, i, t), j)︸ ︷︷ ︸
s′

, . . .}

∙ Main SMT module: “Is M T-unsatisfiable?”

∙ T-solver: “I do not know yet, but it will help me if you
consider these theory lemmas:

s = s′ ∧ i = j⇒ s = t, s = s′ ∧ i ̸= j⇒ s = r(a, j) ”

69

modeling splitting on demand

To model the generation of theory lemmas for case splits, add
the rule

T-Learn

|=T ∃v(l1 ∨ · · · ∨ ln) l1, . . . , ln ∈ LS v vars not in F
F := F ∪ {l1 ∨ · · · ∨ ln}

where LS is a finite set of literals dependent on the initial set
of clauses (see [BNOT06] for a formal definition of LS)

Note: For many theories with a theory solver, there exists
an appropriate finite LS for every input F
The set LS does not need to be computed explicitly

70

modeling splitting on demand

To model the generation of theory lemmas for case splits, add
the rule

T-Learn

|=T ∃v(l1 ∨ · · · ∨ ln) l1, . . . , ln ∈ LS v vars not in F
F := F ∪ {l1 ∨ · · · ∨ ln}

where LS is a finite set of literals dependent on the initial set
of clauses (see [BNOT06] for a formal definition of LS)

Note: For many theories with a theory solver, there exists
an appropriate finite LS for every input F
The set LS does not need to be computed explicitly

70

modeling splitting on demand

Now we can relax the requirement on the theory solver:

When M |=p F, it must either

∙ determine whether M |=T ⊥ or
∙ generate a new clause by T-Learn containing
at least one literal of LS undefined in M

The T-solver is required to determine whether M |=T ⊥ only if
all literals in LS are defined in M

Note: In practice, to determine if M |=T ⊥, the T-solver only needs
a small subset of LS to be defined in M

71

modeling splitting on demand

Now we can relax the requirement on the theory solver:

When M |=p F, it must either

∙ determine whether M |=T ⊥ or
∙ generate a new clause by T-Learn containing
at least one literal of LS undefined in M

The T-solver is required to determine whether M |=T ⊥ only if
all literals in LS are defined in M

Note: In practice, to determine if M |=T ⊥, the T-solver only needs
a small subset of LS to be defined in M

71

modeling splitting on demand

Now we can relax the requirement on the theory solver:

When M |=p F, it must either

∙ determine whether M |=T ⊥ or
∙ generate a new clause by T-Learn containing
at least one literal of LS undefined in M

The T-solver is required to determine whether M |=T ⊥ only if
all literals in LS are defined in M

Note: In practice, to determine if M |=T ⊥, the T-solver only needs
a small subset of LS to be defined in M

71

example — theory of finite sets

F : x = y ∪ z ∧ y ̸= ∅ ∨ x ̸= z

M F rule
x = y ∪ z F by Propagate+

x = y ∪ z • y = ∅ F by Decide
x = y ∪ z • y = ∅ x ̸= z F by Propagate
x = y ∪ z • y = ∅ x ̸= z F, (x = z ∨ e ∈ x ∨ e ∈ z), by T-Learn

F,

(x = z ∨ e ̸∈ x ∨ e ̸∈ z)
x = y ∪ z • y = ∅ x ̸= z • e ∈ x F, (x = z ∨ e ∈ x ∨ e ∈ z), by Decide

F,

(x = z ∨ e ̸∈ x ∨ e ̸∈ z)
x = y ∪ z • y = ∅ x ̸= z • e ∈ x e /∈ z F, (x = z ∨ e ∈ x ∨ e ∈ z), by Propagate

F,

(x = z ∨ e ̸∈ x ∨ e ̸∈ z)

T-solver can make the following deductions at this point:

e ∈ x · · · ⇒ e ∈ y ∪ z · · · ⇒ e ∈ y · · · ⇒ e ∈ ∅ ⇒ ⊥

This enables an application of T-Conflict with clause

x ̸= y ∪ z ∨ y ̸= ∅ ∨ x = z ∨ e /∈ x ∨ e ∈ z

72

example — theory of finite sets

F : x = y ∪ z ∧ y ̸= ∅ ∨ x ̸= z

M F rule
x = y ∪ z F by Propagate+

x = y ∪ z • y = ∅ F by Decide

x = y ∪ z • y = ∅ x ̸= z F by Propagate
x = y ∪ z • y = ∅ x ̸= z F, (x = z ∨ e ∈ x ∨ e ∈ z), by T-Learn

F,

(x = z ∨ e ̸∈ x ∨ e ̸∈ z)
x = y ∪ z • y = ∅ x ̸= z • e ∈ x F, (x = z ∨ e ∈ x ∨ e ∈ z), by Decide

F,

(x = z ∨ e ̸∈ x ∨ e ̸∈ z)
x = y ∪ z • y = ∅ x ̸= z • e ∈ x e /∈ z F, (x = z ∨ e ∈ x ∨ e ∈ z), by Propagate

F,

(x = z ∨ e ̸∈ x ∨ e ̸∈ z)

T-solver can make the following deductions at this point:

e ∈ x · · · ⇒ e ∈ y ∪ z · · · ⇒ e ∈ y · · · ⇒ e ∈ ∅ ⇒ ⊥

This enables an application of T-Conflict with clause

x ̸= y ∪ z ∨ y ̸= ∅ ∨ x = z ∨ e /∈ x ∨ e ∈ z

72

example — theory of finite sets

F : x = y ∪ z ∧ y ̸= ∅ ∨ x ̸= z

M F rule
x = y ∪ z F by Propagate+

x = y ∪ z • y = ∅ F by Decide
x = y ∪ z • y = ∅ x ̸= z F by Propagate

x = y ∪ z • y = ∅ x ̸= z F, (x = z ∨ e ∈ x ∨ e ∈ z), by T-Learn

F,

(x = z ∨ e ̸∈ x ∨ e ̸∈ z)
x = y ∪ z • y = ∅ x ̸= z • e ∈ x F, (x = z ∨ e ∈ x ∨ e ∈ z), by Decide

F,

(x = z ∨ e ̸∈ x ∨ e ̸∈ z)
x = y ∪ z • y = ∅ x ̸= z • e ∈ x e /∈ z F, (x = z ∨ e ∈ x ∨ e ∈ z), by Propagate

F,

(x = z ∨ e ̸∈ x ∨ e ̸∈ z)

T-solver can make the following deductions at this point:

e ∈ x · · · ⇒ e ∈ y ∪ z · · · ⇒ e ∈ y · · · ⇒ e ∈ ∅ ⇒ ⊥

This enables an application of T-Conflict with clause

x ̸= y ∪ z ∨ y ̸= ∅ ∨ x = z ∨ e /∈ x ∨ e ∈ z

72

example — theory of finite sets

F : x = y ∪ z ∧ y ̸= ∅ ∨ x ̸= z

M F rule
x = y ∪ z F by Propagate+

x = y ∪ z • y = ∅ F by Decide
x = y ∪ z • y = ∅ x ̸= z F by Propagate
x = y ∪ z • y = ∅ x ̸= z F, (x = z ∨ e ∈ x ∨ e ∈ z), by T-Learn

F,

(x = z ∨ e ̸∈ x ∨ e ̸∈ z)
x = y ∪ z • y = ∅ x ̸= z • e ∈ x F, (x = z ∨ e ∈ x ∨ e ∈ z), by Decide

F,

(x = z ∨ e ̸∈ x ∨ e ̸∈ z)
x = y ∪ z • y = ∅ x ̸= z • e ∈ x e /∈ z F, (x = z ∨ e ∈ x ∨ e ∈ z), by Propagate

F,

(x = z ∨ e ̸∈ x ∨ e ̸∈ z)

T-solver can make the following deductions at this point:

e ∈ x · · · ⇒ e ∈ y ∪ z · · · ⇒ e ∈ y · · · ⇒ e ∈ ∅ ⇒ ⊥

This enables an application of T-Conflict with clause

x ̸= y ∪ z ∨ y ̸= ∅ ∨ x = z ∨ e /∈ x ∨ e ∈ z

72

example — theory of finite sets

F : x = y ∪ z ∧ y ̸= ∅ ∨ x ̸= z

M F rule
x = y ∪ z F by Propagate+

x = y ∪ z • y = ∅ F by Decide
x = y ∪ z • y = ∅ x ̸= z F by Propagate
x = y ∪ z • y = ∅ x ̸= z F, (x = z ∨ e ∈ x ∨ e ∈ z), by T-Learn

F,

(x = z ∨ e ̸∈ x ∨ e ̸∈ z)

x = y ∪ z • y = ∅ x ̸= z • e ∈ x F, (x = z ∨ e ∈ x ∨ e ∈ z), by Decide

F,

(x = z ∨ e ̸∈ x ∨ e ̸∈ z)
x = y ∪ z • y = ∅ x ̸= z • e ∈ x e /∈ z F, (x = z ∨ e ∈ x ∨ e ∈ z), by Propagate

F,

(x = z ∨ e ̸∈ x ∨ e ̸∈ z)

T-solver can make the following deductions at this point:

e ∈ x · · · ⇒ e ∈ y ∪ z · · · ⇒ e ∈ y · · · ⇒ e ∈ ∅ ⇒ ⊥

This enables an application of T-Conflict with clause

x ̸= y ∪ z ∨ y ̸= ∅ ∨ x = z ∨ e /∈ x ∨ e ∈ z

72

example — theory of finite sets

F : x = y ∪ z ∧ y ̸= ∅ ∨ x ̸= z

M F rule
x = y ∪ z F by Propagate+

x = y ∪ z • y = ∅ F by Decide
x = y ∪ z • y = ∅ x ̸= z F by Propagate
x = y ∪ z • y = ∅ x ̸= z F, (x = z ∨ e ∈ x ∨ e ∈ z), by T-Learn

F,

(x = z ∨ e ̸∈ x ∨ e ̸∈ z)
x = y ∪ z • y = ∅ x ̸= z • e ∈ x F, (x = z ∨ e ∈ x ∨ e ∈ z), by Decide

F,

(x = z ∨ e ̸∈ x ∨ e ̸∈ z)
x = y ∪ z • y = ∅ x ̸= z • e ∈ x e /∈ z F, (x = z ∨ e ∈ x ∨ e ∈ z), by Propagate

F,

(x = z ∨ e ̸∈ x ∨ e ̸∈ z)

T-solver can make the following deductions at this point:

e ∈ x · · · ⇒ e ∈ y ∪ z · · · ⇒ e ∈ y · · · ⇒ e ∈ ∅ ⇒ ⊥

This enables an application of T-Conflict with clause

x ̸= y ∪ z ∨ y ̸= ∅ ∨ x = z ∨ e /∈ x ∨ e ∈ z

72

example — theory of finite sets

F : x = y ∪ z ∧ y ̸= ∅ ∨ x ̸= z

M F rule
x = y ∪ z F by Propagate+

x = y ∪ z • y = ∅ F by Decide
x = y ∪ z • y = ∅ x ̸= z F by Propagate
x = y ∪ z • y = ∅ x ̸= z F, (x = z ∨ e ∈ x ∨ e ∈ z), by T-Learn

F,

(x = z ∨ e ̸∈ x ∨ e ̸∈ z)
x = y ∪ z • y = ∅ x ̸= z • e ∈ x F, (x = z ∨ e ∈ x ∨ e ∈ z), by Decide

F,

(x = z ∨ e ̸∈ x ∨ e ̸∈ z)

x = y ∪ z • y = ∅ x ̸= z • e ∈ x e /∈ z F, (x = z ∨ e ∈ x ∨ e ∈ z), by Propagate

F,

(x = z ∨ e ̸∈ x ∨ e ̸∈ z)

T-solver can make the following deductions at this point:

e ∈ x · · · ⇒ e ∈ y ∪ z · · · ⇒ e ∈ y · · · ⇒ e ∈ ∅ ⇒ ⊥

This enables an application of T-Conflict with clause

x ̸= y ∪ z ∨ y ̸= ∅ ∨ x = z ∨ e /∈ x ∨ e ∈ z

72

example — theory of finite sets

F : x = y ∪ z ∧ y ̸= ∅ ∨ x ̸= z

M F rule
x = y ∪ z F by Propagate+

x = y ∪ z • y = ∅ F by Decide
x = y ∪ z • y = ∅ x ̸= z F by Propagate
x = y ∪ z • y = ∅ x ̸= z F, (x = z ∨ e ∈ x ∨ e ∈ z), by T-Learn

F,

(x = z ∨ e ̸∈ x ∨ e ̸∈ z)
x = y ∪ z • y = ∅ x ̸= z • e ∈ x F, (x = z ∨ e ∈ x ∨ e ∈ z), by Decide

F,

(x = z ∨ e ̸∈ x ∨ e ̸∈ z)
x = y ∪ z • y = ∅ x ̸= z • e ∈ x e /∈ z F, (x = z ∨ e ∈ x ∨ e ∈ z), by Propagate

F,

(x = z ∨ e ̸∈ x ∨ e ̸∈ z)

T-solver can make the following deductions at this point:

e ∈ x · · · ⇒ e ∈ y ∪ z · · · ⇒ e ∈ y · · · ⇒ e ∈ ∅ ⇒ ⊥

This enables an application of T-Conflict with clause

x ̸= y ∪ z ∨ y ̸= ∅ ∨ x = z ∨ e /∈ x ∨ e ∈ z

72

example — theory of finite sets

F : x = y ∪ z ∧ y ̸= ∅ ∨ x ̸= z

M F rule
x = y ∪ z F by Propagate+

x = y ∪ z • y = ∅ F by Decide
x = y ∪ z • y = ∅ x ̸= z F by Propagate
x = y ∪ z • y = ∅ x ̸= z F, (x = z ∨ e ∈ x ∨ e ∈ z), by T-Learn

F,

(x = z ∨ e ̸∈ x ∨ e ̸∈ z)
x = y ∪ z • y = ∅ x ̸= z • e ∈ x F, (x = z ∨ e ∈ x ∨ e ∈ z), by Decide

F,

(x = z ∨ e ̸∈ x ∨ e ̸∈ z)
x = y ∪ z • y = ∅ x ̸= z • e ∈ x e /∈ z F, (x = z ∨ e ∈ x ∨ e ∈ z), by Propagate

F,

(x = z ∨ e ̸∈ x ∨ e ̸∈ z)

T-solver can make the following deductions at this point:

e ∈ x · · · ⇒ e ∈ y ∪ z · · · ⇒ e ∈ y · · · ⇒ e ∈ ∅ ⇒ ⊥

This enables an application of T-Conflict with clause

x ̸= y ∪ z ∨ y ̸= ∅ ∨ x = z ∨ e /∈ x ∨ e ∈ z

72

example — theory of finite sets

F : x = y ∪ z ∧ y ̸= ∅ ∨ x ̸= z

M F rule
x = y ∪ z F by Propagate+

x = y ∪ z • y = ∅ F by Decide
x = y ∪ z • y = ∅ x ̸= z F by Propagate
x = y ∪ z • y = ∅ x ̸= z F, (x = z ∨ e ∈ x ∨ e ∈ z), by T-Learn

F,

(x = z ∨ e ̸∈ x ∨ e ̸∈ z)
x = y ∪ z • y = ∅ x ̸= z • e ∈ x F, (x = z ∨ e ∈ x ∨ e ∈ z), by Decide

F,

(x = z ∨ e ̸∈ x ∨ e ̸∈ z)
x = y ∪ z • y = ∅ x ̸= z • e ∈ x e /∈ z F, (x = z ∨ e ∈ x ∨ e ∈ z), by Propagate

F,

(x = z ∨ e ̸∈ x ∨ e ̸∈ z)

T-solver can make the following deductions at this point:

e ∈ x · · · ⇒ e ∈ y ∪ z · · · ⇒ e ∈ y · · · ⇒ e ∈ ∅ ⇒ ⊥

This enables an application of T-Conflict with clause

x ̸= y ∪ z ∨ y ̸= ∅ ∨ x = z ∨ e /∈ x ∨ e ∈ z

72

example — theory of finite sets

F : x = y ∪ z ∧ y ̸= ∅ ∨ x ̸= z

M F rule
x = y ∪ z F by Propagate+

x = y ∪ z • y = ∅ F by Decide
x = y ∪ z • y = ∅ x ̸= z F by Propagate
x = y ∪ z • y = ∅ x ̸= z F, (x = z ∨ e ∈ x ∨ e ∈ z), by T-Learn

F,

(x = z ∨ e ̸∈ x ∨ e ̸∈ z)
x = y ∪ z • y = ∅ x ̸= z • e ∈ x F, (x = z ∨ e ∈ x ∨ e ∈ z), by Decide

F,

(x = z ∨ e ̸∈ x ∨ e ̸∈ z)
x = y ∪ z • y = ∅ x ̸= z • e ∈ x e /∈ z F, (x = z ∨ e ∈ x ∨ e ∈ z), by Propagate

F,

(x = z ∨ e ̸∈ x ∨ e ̸∈ z)

T-solver can make the following deductions at this point:

e ∈ x · · · ⇒ e ∈ y ∪ z · · · ⇒ e ∈ y · · · ⇒ e ∈ ∅ ⇒ ⊥

This enables an application of T-Conflict with clause

x ̸= y ∪ z ∨ y ̸= ∅ ∨ x = z ∨ e /∈ x ∨ e ∈ z

72

correctness results

Correctness results can be extended to the new rule.

Soundness: The new T-Learn rule maintains satisfiability of
the clause set.

Completeness: As long as the theory solver can decide M |=T ⊥
when all literals in LS are determined, the system is still
complete.

Termination: The system terminates under the same
conditions as before. Roughly:

∙ Any lemma is (re)learned only finitely many times
∙ Restart is applied with increased periodicity

73

combining theories and their
solvers

need for combining theories and solvers

Many applications give rise to mixed-theory formulas like:

a ≈ b+ 2 ∧ A = store(B,a+ 1, 4) ∧
A[b+ 3] = 2 ∨ f(a− 1) ̸= f(b+ 1)

Solving that formula requires reasoning over

∙ the theory of linear arithmetic (TLA)
∙ the theory of arrays (TA)
∙ the theory of uninterpreted functions (TUF)

Question: Given solvers for each theory, can we combine them
modularly into one for TLA ∪ TA ∪ TUF?

Under certain conditions, we can do it with the Nelson-Oppen
combination method [NO79, Opp80]

75

need for combining theories and solvers

Many applications give rise to mixed-theory formulas like:

a ≈ b+ 2 ∧ A = store(B,a+ 1, 4) ∧
A[b+ 3] = 2 ∨ f(a− 1) ̸= f(b+ 1)

Solving that formula requires reasoning over

∙ the theory of linear arithmetic (TLA)
∙ the theory of arrays (TA)
∙ the theory of uninterpreted functions (TUF)

Question: Given solvers for each theory, can we combine them
modularly into one for TLA ∪ TA ∪ TUF?

Under certain conditions, we can do it with the Nelson-Oppen
combination method [NO79, Opp80]

75

need for combining theories and solvers

Many applications give rise to mixed-theory formulas like:

a ≈ b+ 2 ∧ A = store(B,a+ 1, 4) ∧
A[b+ 3] = 2 ∨ f(a− 1) ̸= f(b+ 1)

Solving that formula requires reasoning over

∙ the theory of linear arithmetic (TLA)
∙ the theory of arrays (TA)
∙ the theory of uninterpreted functions (TUF)

Question: Given solvers for each theory, can we combine them
modularly into one for TLA ∪ TA ∪ TUF?

Under certain conditions, we can do it with the Nelson-Oppen
combination method [NO79, Opp80]

75

need for combining theories and solvers

Many applications give rise to mixed-theory formulas like:

a ≈ b+ 2 ∧ A = store(B,a+ 1, 4) ∧
A[b+ 3] = 2 ∨ f(a− 1) ̸= f(b+ 1)

Solving that formula requires reasoning over

∙ the theory of linear arithmetic (TLA)
∙ the theory of arrays (TA)
∙ the theory of uninterpreted functions (TUF)

Question: Given solvers for each theory, can we combine them
modularly into one for TLA ∪ TA ∪ TUF?

Under certain conditions, we can do it with the Nelson-Oppen
combination method [NO79, Opp80]

75

motivating example (convex case)

Consider the following set of literals over TLRA ∪ TUF
(TLRA, linear real arithmetic):

f(f(x)− f(y)) = a
f(0) > a+ 2
x = y

First step: purify literals so that each belongs to a single
theory

76

motivating example (convex case)

Consider the following set of literals over TLRA ∪ TUF
(TLRA, linear real arithmetic):

f(f(x)− f(y)) = a
f(0) > a+ 2
x = y

First step: purify literals so that each belongs to a single
theory

76

motivating example (convex case)

Consider the following set of literals over TLRA ∪ TUF
(TLRA, linear real arithmetic):

f(f(x)− f(y)) = a
f(0) > a+ 2
x = y

First step: purify literals so that each belongs to a single
theory

f(f(x)− f(y)) = a =⇒ f(e1) = a =⇒ f(e1) = a
e1 = f(x)− f(y) e1 = e2 − e3

e2 = f(x)
e3 = f(y)

76

motivating example (convex case)

Consider the following set of literals over TLRA ∪ TUF
(TLRA, linear real arithmetic):

f(f(x)− f(y)) = a
f(0) > a+ 2
x = y

First step: purify literals so that each belongs to a single
theory

f(0) > a+ 2 =⇒ f(e4) > a+ 2 =⇒ f(e4) = e5
e4 = 0 e4 = 0

e5 > a+ 2

76

motivating example (convex case)

Second step: exchange entailed interface equalities, equalities
over shared constants e1, e2, e3, e4, e5,a

L1 L2
f(e1) = a e2 − e3 = e1
f(x) = e2 e4 = 0
f(y) = e3 e5 > a+ 2
f(e4) = e5

e2 = e3

x = y

a = e5
e1 = e4

L1 |=UF e2 = e3 L2 |=LRA e1 = e4
L1 |=UF a = e5 Third step: check for

satisfiability locally

L1 ̸|=UF ⊥
L2 |=LRA ⊥

Report unsatisfiable

77

motivating example (convex case)

Second step: exchange entailed interface equalities, equalities
over shared constants e1, e2, e3, e4, e5,a

L1 L2
f(e1) = a e2 − e3 = e1
f(x) = e2 e4 = 0
f(y) = e3 e5 > a+ 2
f(e4) = e5

e2 = e3

x = y

a = e5
e1 = e4

L1 |=UF e2 = e3

L2 |=LRA e1 = e4
L1 |=UF a = e5 Third step: check for

satisfiability locally

L1 ̸|=UF ⊥
L2 |=LRA ⊥

Report unsatisfiable

77

motivating example (convex case)

Second step: exchange entailed interface equalities, equalities
over shared constants e1, e2, e3, e4, e5,a

L1 L2
f(e1) = a e2 − e3 = e1
f(x) = e2 e4 = 0
f(y) = e3 e5 > a+ 2
f(e4) = e5 e2 = e3

x = y

a = e5
e1 = e4

L1 |=UF e2 = e3 L2 |=LRA e1 = e4
L1 |=UF a = e5 Third step: check for

satisfiability locally

L1 ̸|=UF ⊥
L2 |=LRA ⊥

Report unsatisfiable

77

motivating example (convex case)

Second step: exchange entailed interface equalities, equalities
over shared constants e1, e2, e3, e4, e5,a

L1 L2
f(e1) = a e2 − e3 = e1
f(x) = e2 e4 = 0
f(y) = e3 e5 > a+ 2
f(e4) = e5 e2 = e3

x = y

a = e5
e1 = e4

L1 |=UF e2 = e3

L2 |=LRA e1 = e4

L1 |=UF a = e5 Third step: check for
satisfiability locally

L1 ̸|=UF ⊥
L2 |=LRA ⊥

Report unsatisfiable

77

motivating example (convex case)

Second step: exchange entailed interface equalities, equalities
over shared constants e1, e2, e3, e4, e5,a

L1 L2
f(e1) = a e2 − e3 = e1
f(x) = e2 e4 = 0
f(y) = e3 e5 > a+ 2
f(e4) = e5 e2 = e3

x = y

a = e5

e1 = e4

L1 |=UF e2 = e3 L2 |=LRA e1 = e4
L1 |=UF a = e5 Third step: check for

satisfiability locally

L1 ̸|=UF ⊥
L2 |=LRA ⊥

Report unsatisfiable

77

motivating example (convex case)

Second step: exchange entailed interface equalities, equalities
over shared constants e1, e2, e3, e4, e5,a

L1 L2
f(e1) = a e2 − e3 = e1
f(x) = e2 e4 = 0
f(y) = e3 e5 > a+ 2
f(e4) = e5 e2 = e3

x = y

a = e5

e1 = e4

L1 |=UF e2 = e3 L2 |=LRA e1 = e4

L1 |=UF a = e5

Third step: check for
satisfiability locally
L1 ̸|=UF ⊥

L2 |=LRA ⊥
Report unsatisfiable

77

motivating example (convex case)

Second step: exchange entailed interface equalities, equalities
over shared constants e1, e2, e3, e4, e5,a

L1 L2
f(e1) = a e2 − e3 = e1
f(x) = e2 e4 = 0
f(y) = e3 e5 > a+ 2
f(e4) = e5 e2 = e3

x = y a = e5
e1 = e4

L1 |=UF e2 = e3 L2 |=LRA e1 = e4
L1 |=UF a = e5 Third step: check for

satisfiability locally
L1 ̸|=UF ⊥
L2 |=LRA ⊥

Report unsatisfiable

77

motivating example (convex case)

Second step: exchange entailed interface equalities, equalities
over shared constants e1, e2, e3, e4, e5,a

L1 L2
f(e1) = a e2 − e3 = e1
f(x) = e2 e4 = 0
f(y) = e3 e5 > a+ 2
f(e4) = e5 e2 = e3

x = y a = e5
e1 = e4

L1 |=UF e2 = e3 L2 |=LRA e1 = e4
L1 |=UF a = e5

Third step: check for
satisfiability locally
L1 ̸|=UF ⊥
L2 |=LRA ⊥

Report unsatisfiable

77

motivating example (convex case)

Second step: exchange entailed interface equalities, equalities
over shared constants e1, e2, e3, e4, e5,a

L1 L2
f(e1) = a e2 − e3 = e1
f(x) = e2 e4 = 0
f(y) = e3 e5 > a+ 2
f(e4) = e5 e2 = e3

x = y a = e5
e1 = e4

L1 |=UF e2 = e3 L2 |=LRA e1 = e4
L1 |=UF a = e5

Third step: check for
satisfiability locally
L1 ̸|=UF ⊥
L2 |=LRA ⊥

Report unsatisfiable
77

motivating example (non-convex case)

Consider the following unsatisfiable set of literals over
TLIA ∪ TUF (TLIA, linear integer arithmetic):

1 ≤ x ≤ 2
f(1) = a
f(2) = f(1) + 3
a = b+ 2

First step: purify literals so that each belongs to a single
theory

78

motivating example (non-convex case)

Consider the following unsatisfiable set of literals over
TLIA ∪ TUF (TLIA, linear integer arithmetic):

1 ≤ x ≤ 2
f(1) = a
f(2) = f(1) + 3
a = b+ 2

First step: purify literals so that each belongs to a single
theory

78

motivating example (non-convex case)

Consider the following unsatisfiable set of literals over
TLIA ∪ TUF (TLIA, linear integer arithmetic):

1 ≤ x ≤ 2
f(1) = a
f(2) = f(1) + 3
a = b+ 2

First step: purify literals so that each belongs to a single
theory

f(1) = a =⇒ f(e1) = a
e1 = 1

78

motivating example (non-convex case)

Consider the following unsatisfiable set of literals over
TLIA ∪ TUF (TLIA, linear integer arithmetic):

1 ≤ x ≤ 2
f(1) = a
f(2) = f(1) + 3
a = b+ 2

First step: purify literals so that each belongs to a single
theory

f(2) = f(1) + 3 =⇒ e2 = 2
f(e2) = e3
f(e1) = e4
e3 = e4 + 3

78

motivating example (non-convex case)

Second step: exchange entailed interface equalities over
shared constants x, e1,a,b, e2, e3, e4

L1 L2
1 ≤ x f(e1) = a
x ≤ 2 f(x) = b
e1 = 1 f(e2) = e3
a = b+ 2 f(e1) = e4
e2 = 2

x = e1

e3 = e4 + 3
a = e4

x = e1

79

motivating example (non-convex case)

Second step: exchange entailed interface equalities over
shared constants x, e1,a,b, e2, e3, e4

L1 L2
1 ≤ x f(e1) = a
x ≤ 2 f(x) = b
e1 = 1 f(e2) = e3
a = b+ 2 f(e1) = e4
e2 = 2

x = e1

e3 = e4 + 3
a = e4

x = e1

No more entailed equalities, but L1 |=LIA x = e1 ∨ x = e2

79

motivating example (non-convex case)

Second step: exchange entailed interface equalities over
shared constants x, e1,a,b, e2, e3, e4

L1 L2
1 ≤ x f(e1) = a
x ≤ 2 f(x) = b
e1 = 1 f(e2) = e3
a = b+ 2 f(e1) = e4
e2 = 2

x = e1

e3 = e4 + 3
a = e4

x = e1

Consider each case of x = e1 ∨ x = e2 separately

79

motivating example (non-convex case)

Second step: exchange entailed interface equalities over
shared constants x, e1,a,b, e2, e3, e4

L1 L2
1 ≤ x f(e1) = a
x ≤ 2 f(x) = b
e1 = 1 f(e2) = e3
a = b+ 2 f(e1) = e4
e2 = 2

x = e1

e3 = e4 + 3
a = e4

x = e1

Case 1) x = e1

79

motivating example (non-convex case)

Second step: exchange entailed interface equalities over
shared constants x, e1,a,b, e2, e3, e4

L1 L2
1 ≤ x f(e1) = a
x ≤ 2 f(x) = b
e1 = 1 f(e2) = e3
a = b+ 2 f(e1) = e4
e2 = 2 x = e1
e3 = e4 + 3
a = e4
x = e1

79

motivating example (non-convex case)

Second step: exchange entailed interface equalities over
shared constants x, e1,a,b, e2, e3, e4

L1 L2
1 ≤ x f(e1) = a
x ≤ 2 f(x) = b
e1 = 1 f(e2) = e3
a = b+ 2 f(e1) = e4
e2 = 2 x = e1
e3 = e4 + 3
a = e4
x = e1

L2 |=UF a = b, which entails ⊥ when sent to L1

79

motivating example (non-convex case)

Second step: exchange entailed interface equalities over
shared constants x, e1,a,b, e2, e3, e4

L1 L2
1 ≤ x f(e1) = a
x ≤ 2 f(x) = b
e1 = 1 f(e2) = e3
a = b+ 2 f(e1) = e4
e2 = 2

x = e2

e3 = e4 + 3
a = e4

x = e2

80

motivating example (non-convex case)

Second step: exchange entailed interface equalities over
shared constants x, e1,a,b, e2, e3, e4

L1 L2
1 ≤ x f(e1) = a
x ≤ 2 f(x) = b
e1 = 1 f(e2) = e3
a = b+ 2 f(e1) = e4
e2 = 2

x = e2

e3 = e4 + 3
a = e4

x = e2

Case 2) x = e2

80

motivating example (non-convex case)

Second step: exchange entailed interface equalities over
shared constants x, e1,a,b, e2, e3, e4

L1 L2
1 ≤ x f(e1) = a
x ≤ 2 f(x) = b
e1 = 1 f(e2) = e3
a = b+ 2 f(e1) = e4
e2 = 2 x = e2
e3 = e4 + 3
a = e4
x = e2

80

motivating example (non-convex case)

Second step: exchange entailed interface equalities over
shared constants x, e1,a,b, e2, e3, e4

L1 L2
1 ≤ x f(e1) = a
x ≤ 2 f(x) = b
e1 = 1 f(e2) = e3
a = b+ 2 f(e1) = e4
e2 = 2 x = e2
e3 = e4 + 3
a = e4
x = e2

L2 |=UF e3 = b, which entails ⊥ when sent to L1

80

the nelson-oppen method

∙ For i = 1, 2, let Ti be a first-order theory of signature Σi (set of
function and predicate symbols in Ti other than =)

∙ Let T = T1 ∪ T2
∙ Let C be a finite set of free constants (i.e., not in Σ1 ∪ Σ2)

We consider only input problems of the form

L1 ∪ L2

where each Li is a finite set of ground (i.e., variable-free)
(Σi ∪ C)-literals

Note: Because of purification, there is no loss of generality
in considering only ground (Σi ∪ C)-literals

81

the nelson-oppen method

∙ For i = 1, 2, let Ti be a first-order theory of signature Σi (set of
function and predicate symbols in Ti other than =)

∙ Let T = T1 ∪ T2
∙ Let C be a finite set of free constants (i.e., not in Σ1 ∪ Σ2)

We consider only input problems of the form

L1 ∪ L2

where each Li is a finite set of ground (i.e., variable-free)
(Σi ∪ C)-literals

Note: Because of purification, there is no loss of generality
in considering only ground (Σi ∪ C)-literals

81

the nelson-oppen method

∙ For i = 1, 2, let Ti be a first-order theory of signature Σi (set of
function and predicate symbols in Ti other than =)

∙ Let T = T1 ∪ T2
∙ Let C be a finite set of free constants (i.e., not in Σ1 ∪ Σ2)

We consider only input problems of the form

L1 ∪ L2

where each Li is a finite set of ground (i.e., variable-free)
(Σi ∪ C)-literals

Note: Because of purification, there is no loss of generality
in considering only ground (Σi ∪ C)-literals

81

the nelson-oppen method

Bare-bones, non-deterministic, non-incremental version
[Opp80, Rin96, TH96]:

Input: L1 ∪ L2 with Li finite set of ground (Σi ∪ C)-literals
Output: sat or unsat

1. Guess an arrangement A, i.e., a set of equalities and
disequalities over C such that

c = d ∈ A or c ̸= d ∈ A for all c,d ∈ C

2. If Li ∪ A is Ti-unsatisfiable for i = 1 or i = 2, return unsat

3. Otherwise, return sat

82

the nelson-oppen method

Bare-bones, non-deterministic, non-incremental version
[Opp80, Rin96, TH96]:

Input: L1 ∪ L2 with Li finite set of ground (Σi ∪ C)-literals
Output: sat or unsat

1. Guess an arrangement A, i.e., a set of equalities and
disequalities over C such that

c = d ∈ A or c ̸= d ∈ A for all c,d ∈ C

2. If Li ∪ A is Ti-unsatisfiable for i = 1 or i = 2, return unsat

3. Otherwise, return sat

82

the nelson-oppen method

Bare-bones, non-deterministic, non-incremental version
[Opp80, Rin96, TH96]:

Input: L1 ∪ L2 with Li finite set of ground (Σi ∪ C)-literals
Output: sat or unsat

1. Guess an arrangement A, i.e., a set of equalities and
disequalities over C such that

c = d ∈ A or c ̸= d ∈ A for all c,d ∈ C

2. If Li ∪ A is Ti-unsatisfiable for i = 1 or i = 2, return unsat

3. Otherwise, return sat

82

the nelson-oppen method

Bare-bones, non-deterministic, non-incremental version
[Opp80, Rin96, TH96]:

Input: L1 ∪ L2 with Li finite set of ground (Σi ∪ C)-literals
Output: sat or unsat

1. Guess an arrangement A, i.e., a set of equalities and
disequalities over C such that

c = d ∈ A or c ̸= d ∈ A for all c,d ∈ C

2. If Li ∪ A is Ti-unsatisfiable for i = 1 or i = 2, return unsat

3. Otherwise, return sat

82

the nelson-oppen method

Bare-bones, non-deterministic, non-incremental version
[Opp80, Rin96, TH96]:

Input: L1 ∪ L2 with Li finite set of ground (Σi ∪ C)-literals
Output: sat or unsat

1. Guess an arrangement A, i.e., a set of equalities and
disequalities over C such that

c = d ∈ A or c ̸= d ∈ A for all c,d ∈ C

2. If Li ∪ A is Ti-unsatisfiable for i = 1 or i = 2, return unsat

3. Otherwise, return sat

82

correctness of the no method

Proposition (Termination) The method is terminating.

(Trivially, because there is only a finite number of arrangements to
guess)

Proposition (Soundness) If the method returns unsat for every
arrangement, the input is (T1 ∪ T2)-unsatisfiable.

(Because satisfiability in (T1 ∪ T2) is always preserved)

Proposition (Completeness) If Σ1 ∩ Σ2 = ∅ and T1 and T2 are
stably infinite, when the method returns sat for some
arrangement, the input is (T1 ∪ T2)-is satisfiable.

83

correctness of the no method

Proposition (Termination) The method is terminating.

(Trivially, because there is only a finite number of arrangements to
guess)

Proposition (Soundness) If the method returns unsat for every
arrangement, the input is (T1 ∪ T2)-unsatisfiable.

(Because satisfiability in (T1 ∪ T2) is always preserved)

Proposition (Completeness) If Σ1 ∩ Σ2 = ∅ and T1 and T2 are
stably infinite, when the method returns sat for some
arrangement, the input is (T1 ∪ T2)-is satisfiable.

83

correctness of the no method

Proposition (Termination) The method is terminating.

(Trivially, because there is only a finite number of arrangements to
guess)

Proposition (Soundness) If the method returns unsat for every
arrangement, the input is (T1 ∪ T2)-unsatisfiable.

(Because satisfiability in (T1 ∪ T2) is always preserved)

Proposition (Completeness) If Σ1 ∩ Σ2 = ∅ and T1 and T2 are
stably infinite, when the method returns sat for some
arrangement, the input is (T1 ∪ T2)-is satisfiable.

83

stably infinite theories

Def. A theory T is stably infinite iff every quantifier-free
T-satisfiable formula is satisfiable in an infinite model of T

Many interesting theories are stably infinite:

∙ Theories of an infinite structure (e.g., integer arithmetic)
∙ Complete theories with an infinite model (e.g., theory of dense
linear orders, theory of lists)

∙ Convex theories (e.g., EUF, linear real arithmetic)

Def. A theory T is convex iff, for any set L of literals
L |=T s1 = t1 ∨ · · · ∨ sn = tn =⇒ L |=T si = ti for some i

Note: With convex theories, arrangements do not need to be guessed,
theycan be computed by (theory) propagation

84

stably infinite theories

Def. A theory T is stably infinite iff every quantifier-free
T-satisfiable formula is satisfiable in an infinite model of T

Many interesting theories are stably infinite:

∙ Theories of an infinite structure (e.g., integer arithmetic)
∙ Complete theories with an infinite model (e.g., theory of dense
linear orders, theory of lists)

∙ Convex theories (e.g., EUF, linear real arithmetic)

Def. A theory T is convex iff, for any set L of literals
L |=T s1 = t1 ∨ · · · ∨ sn = tn =⇒ L |=T si = ti for some i

Note: With convex theories, arrangements do not need to be guessed,
theycan be computed by (theory) propagation

84

stably infinite theories

Def. A theory T is stably infinite iff every quantifier-free
T-satisfiable formula is satisfiable in an infinite model of T

Many interesting theories are stably infinite:

∙ Theories of an infinite structure (e.g., integer arithmetic)
∙ Complete theories with an infinite model (e.g., theory of dense
linear orders, theory of lists)

∙ Convex theories (e.g., EUF, linear real arithmetic)

Def. A theory T is convex iff, for any set L of literals
L |=T s1 = t1 ∨ · · · ∨ sn = tn =⇒ L |=T si = ti for some i

Note: With convex theories, arrangements do not need to be guessed,
theycan be computed by (theory) propagation

84

stably infinite theories

Def. A theory T is stably infinite iff every quantifier-free
T-satisfiable formula is satisfiable in an infinite model of T

Other interesting theories are not stably infinite:

∙ Theories of a finite structure (e.g., theory of bit vectors of finite
size, arithmetic modulo n)

∙ Theories with models of bounded cardinality (e.g., theory of
strings of bounded length)

∙ Some equational/Horn theories

The Nelson-Oppen method has been extended to some
classes of non-stably infinite theories [TZ05, RRZ05, JB10]

85

stably infinite theories

Def. A theory T is stably infinite iff every quantifier-free
T-satisfiable formula is satisfiable in an infinite model of T

Other interesting theories are not stably infinite:

∙ Theories of a finite structure (e.g., theory of bit vectors of finite
size, arithmetic modulo n)

∙ Theories with models of bounded cardinality (e.g., theory of
strings of bounded length)

∙ Some equational/Horn theories

The Nelson-Oppen method has been extended to some
classes of non-stably infinite theories [TZ05, RRZ05, JB10]

85

stably infinite theories

Def. A theory T is stably infinite iff every quantifier-free
T-satisfiable formula is satisfiable in an infinite model of T

Other interesting theories are not stably infinite:

∙ Theories of a finite structure (e.g., theory of bit vectors of finite
size, arithmetic modulo n)

∙ Theories with models of bounded cardinality (e.g., theory of
strings of bounded length)

∙ Some equational/Horn theories

The Nelson-Oppen method has been extended to some
classes of non-stably infinite theories [TZ05, RRZ05, JB10]

85

smt solving with multiple theories

Let T1, . . . , Tn be theories with respective solvers S1, . . . , Sn

How can we integrate all of them cooperatively into a single
SMT solver for T = T1 ∪ · · · ∪ Tn?

86

smt solving with multiple theories

Let T1, . . . , Tn be theories with respective solvers S1, . . . , Sn

How can we integrate all of them cooperatively into a single
SMT solver for T = T1 ∪ · · · ∪ Tn?

Quick Solution:

1. Combine S1, . . . , Sn with Nelson-Oppen into a theory solver
for T

2. Build a DPLL(T) solver as usual

86

smt solving with multiple theories

Let T1, . . . , Tn be theories with respective solvers S1, . . . , Sn

How can we integrate all of them cooperatively into a single
SMT solver for T = T1 ∪ · · · ∪ Tn?

Better Solution [Bar02, BBC+05b, BNOT06]:

1. Extend DPLL(T) to DPLL(T1, . . . , Tn)

2. Lift Nelson-Oppen to the DPLL(X1, . . . , Xn) level

3. Build a DPLL(T1, . . . , Tn) solver

86

modeling dpll(t1, . . . , tn) abstractly

∙ Let n = 2, for simplicity

∙ Let Ti be of signature Σi for i = 1, 2, with Σ1 ∩ Σ2 = ∅

∙ Let C be a set of free constants

∙ Assume wlog that each input literal has signature (Σ1 ∪ C) or
(Σ2 ∪ C) (no mixed literals)

∙ Let M|i
def
= {(Σi ∪ C)-literals of M and their complement}

∙ Let I(M) def
= {c = d | c,d occur in C, M|1 and M|2} ∪

{c ̸= d | c,d occur in C, M|1 and M|2}
(interface literals)

87

abstract dpll modulo multiple theories

Propagate, Conflict, Explain, Backjump, Fail (unchanged)

Decide
l ∈ Lit(F) ∪ I(M) l, l /∈ M

M := M • l

Only change: decide on interface equalities as well

T-Propagate
l ∈ Lit(F) ∪ I(M) i ∈ {1, 2} M |=Ti l l, l /∈ M

M := M l

Only change: propagate interface equalities as well, but
reason locally in each Ti

88

abstract dpll modulo multiple theories

Propagate, Conflict, Explain, Backjump, Fail (unchanged)

Decide
l ∈ Lit(F) ∪ I(M) l, l /∈ M

M := M • l

Only change: decide on interface equalities as well

T-Propagate
l ∈ Lit(F) ∪ I(M) i ∈ {1, 2} M |=Ti l l, l /∈ M

M := M l

Only change: propagate interface equalities as well, but
reason locally in each Ti

88

abstract dpll modulo multiple theories

Propagate, Conflict, Explain, Backjump, Fail (unchanged)

Decide
l ∈ Lit(F) ∪ I(M) l, l /∈ M

M := M • l

Only change: decide on interface equalities as well

T-Propagate
l ∈ Lit(F) ∪ I(M) i ∈ {1, 2} M |=Ti l l, l /∈ M

M := M l

Only change: propagate interface equalities as well, but
reason locally in each Ti

88

abstract dpll modulo multiple theories

T-Conflict
C = no l1, . . . , ln ∈ M l1, . . . , ln |=Ti ⊥ i ∈ {1, 2}

C := l1 ∨ · · · ∨ ln
T-Explain

C = l ∨ D l1, . . . , ln |=Ti l i ∈ {1, 2} l1, . . . , ln ≺M l
C := l1 ∨ · · · ∨ ln ∨ D

Only change: reason locally in each Ti

I-Learn
|=Ti l1 ∨ · · · ∨ ln l1, . . . , ln ∈ M|i ∪ I(M) i ∈ {1, 2}

F := F ∪ {l1 ∨ · · · ∨ ln}

New rule: for entailed disjunctions of interface literals

89

abstract dpll modulo multiple theories

T-Conflict
C = no l1, . . . , ln ∈ M l1, . . . , ln |=Ti ⊥ i ∈ {1, 2}

C := l1 ∨ · · · ∨ ln
T-Explain

C = l ∨ D l1, . . . , ln |=Ti l i ∈ {1, 2} l1, . . . , ln ≺M l
C := l1 ∨ · · · ∨ ln ∨ D

Only change: reason locally in each Ti

I-Learn
|=Ti l1 ∨ · · · ∨ ln l1, . . . , ln ∈ M|i ∪ I(M) i ∈ {1, 2}

F := F ∪ {l1 ∨ · · · ∨ ln}

New rule: for entailed disjunctions of interface literals
89

example — convex theories

F :=

0︷ ︸︸ ︷
f(e1) = a ∧

1︷ ︸︸ ︷
f(x) = e2 ∧

2︷ ︸︸ ︷
f(y) = e3 ∧

3︷ ︸︸ ︷
f(e4) = e5 ∧

4︷ ︸︸ ︷
x = y ∧

e2 − e3 = e1︸ ︷︷ ︸
5

∧ e4 = 0︸ ︷︷ ︸
6

∧ e5 > a+ 2︸ ︷︷ ︸
7

e2 = e3︸ ︷︷ ︸
8

e1 = e4︸ ︷︷ ︸
9

a = e5︸ ︷︷ ︸
10

M F C rule
F no

0 1 2 3 4 5 6 7 F no by Propagate+
0 1 2 3 4 5 6 7 8 F no by T-Propagate (1, 2, 4 |=UF 8)

0 1 2 3 4 5 6 7 8 9 F no by T-Propagate (5, 6, 8 |=LRA 9)
0 1 2 3 4 5 6 7 8 9 10 F no by T-Propagate (0, 3, 9 |=UF 10)
0 1 2 3 4 5 6 7 8 9 10 F 7 ∨ 10 by T-Conflict (7, 10 |=LRA ⊥)

fail by Fail

90

example — convex theories

F :=

0︷ ︸︸ ︷
f(e1) = a ∧

1︷ ︸︸ ︷
f(x) = e2 ∧

2︷ ︸︸ ︷
f(y) = e3 ∧

3︷ ︸︸ ︷
f(e4) = e5 ∧

4︷ ︸︸ ︷
x = y ∧

e2 − e3 = e1︸ ︷︷ ︸
5

∧ e4 = 0︸ ︷︷ ︸
6

∧ e5 > a+ 2︸ ︷︷ ︸
7

e2 = e3︸ ︷︷ ︸
8

e1 = e4︸ ︷︷ ︸
9

a = e5︸ ︷︷ ︸
10

M F C rule
F no

0 1 2 3 4 5 6 7 F no by Propagate+
0 1 2 3 4 5 6 7 8 F no by T-Propagate (1, 2, 4 |=UF 8)

0 1 2 3 4 5 6 7 8 9 F no by T-Propagate (5, 6, 8 |=LRA 9)
0 1 2 3 4 5 6 7 8 9 10 F no by T-Propagate (0, 3, 9 |=UF 10)
0 1 2 3 4 5 6 7 8 9 10 F 7 ∨ 10 by T-Conflict (7, 10 |=LRA ⊥)

fail by Fail

90

example — convex theories

F :=

0︷ ︸︸ ︷
f(e1) = a ∧

1︷ ︸︸ ︷
f(x) = e2 ∧

2︷ ︸︸ ︷
f(y) = e3 ∧

3︷ ︸︸ ︷
f(e4) = e5 ∧

4︷ ︸︸ ︷
x = y ∧

e2 − e3 = e1︸ ︷︷ ︸
5

∧ e4 = 0︸ ︷︷ ︸
6

∧ e5 > a+ 2︸ ︷︷ ︸
7

e2 = e3︸ ︷︷ ︸
8

e1 = e4︸ ︷︷ ︸
9

a = e5︸ ︷︷ ︸
10

M F C rule
F no

0 1 2 3 4 5 6 7 F no by Propagate+

0 1 2 3 4 5 6 7 8 F no by T-Propagate (1, 2, 4 |=UF 8)
0 1 2 3 4 5 6 7 8 9 F no by T-Propagate (5, 6, 8 |=LRA 9)

0 1 2 3 4 5 6 7 8 9 10 F no by T-Propagate (0, 3, 9 |=UF 10)
0 1 2 3 4 5 6 7 8 9 10 F 7 ∨ 10 by T-Conflict (7, 10 |=LRA ⊥)

fail by Fail

90

example — convex theories

F :=

0︷ ︸︸ ︷
f(e1) = a ∧

1︷ ︸︸ ︷
f(x) = e2 ∧

2︷ ︸︸ ︷
f(y) = e3 ∧

3︷ ︸︸ ︷
f(e4) = e5 ∧

4︷ ︸︸ ︷
x = y ∧

e2 − e3 = e1︸ ︷︷ ︸
5

∧ e4 = 0︸ ︷︷ ︸
6

∧ e5 > a+ 2︸ ︷︷ ︸
7

e2 = e3︸ ︷︷ ︸
8

e1 = e4︸ ︷︷ ︸
9

a = e5︸ ︷︷ ︸
10

M F C rule
F no

0 1 2 3 4 5 6 7 F no by Propagate+
0 1 2 3 4 5 6 7 8 F no by T-Propagate (1, 2, 4 |=UF 8)

0 1 2 3 4 5 6 7 8 9 F no by T-Propagate (5, 6, 8 |=LRA 9)
0 1 2 3 4 5 6 7 8 9 10 F no by T-Propagate (0, 3, 9 |=UF 10)
0 1 2 3 4 5 6 7 8 9 10 F 7 ∨ 10 by T-Conflict (7, 10 |=LRA ⊥)

fail by Fail

90

example — convex theories

F :=

0︷ ︸︸ ︷
f(e1) = a ∧

1︷ ︸︸ ︷
f(x) = e2 ∧

2︷ ︸︸ ︷
f(y) = e3 ∧

3︷ ︸︸ ︷
f(e4) = e5 ∧

4︷ ︸︸ ︷
x = y ∧

e2 − e3 = e1︸ ︷︷ ︸
5

∧ e4 = 0︸ ︷︷ ︸
6

∧ e5 > a+ 2︸ ︷︷ ︸
7

e2 = e3︸ ︷︷ ︸
8

e1 = e4︸ ︷︷ ︸
9

a = e5︸ ︷︷ ︸
10

M F C rule
F no

0 1 2 3 4 5 6 7 F no by Propagate+
0 1 2 3 4 5 6 7 8 F no by T-Propagate (1, 2, 4 |=UF 8)

0 1 2 3 4 5 6 7 8 9 F no by T-Propagate (5, 6, 8 |=LRA 9)

0 1 2 3 4 5 6 7 8 9 10 F no by T-Propagate (0, 3, 9 |=UF 10)
0 1 2 3 4 5 6 7 8 9 10 F 7 ∨ 10 by T-Conflict (7, 10 |=LRA ⊥)

fail by Fail

90

example — convex theories

F :=

0︷ ︸︸ ︷
f(e1) = a ∧

1︷ ︸︸ ︷
f(x) = e2 ∧

2︷ ︸︸ ︷
f(y) = e3 ∧

3︷ ︸︸ ︷
f(e4) = e5 ∧

4︷ ︸︸ ︷
x = y ∧

e2 − e3 = e1︸ ︷︷ ︸
5

∧ e4 = 0︸ ︷︷ ︸
6

∧ e5 > a+ 2︸ ︷︷ ︸
7

e2 = e3︸ ︷︷ ︸
8

e1 = e4︸ ︷︷ ︸
9

a = e5︸ ︷︷ ︸
10

M F C rule
F no

0 1 2 3 4 5 6 7 F no by Propagate+
0 1 2 3 4 5 6 7 8 F no by T-Propagate (1, 2, 4 |=UF 8)

0 1 2 3 4 5 6 7 8 9 F no by T-Propagate (5, 6, 8 |=LRA 9)
0 1 2 3 4 5 6 7 8 9 10 F no by T-Propagate (0, 3, 9 |=UF 10)

0 1 2 3 4 5 6 7 8 9 10 F 7 ∨ 10 by T-Conflict (7, 10 |=LRA ⊥)
fail by Fail

90

example — convex theories

F :=

0︷ ︸︸ ︷
f(e1) = a ∧

1︷ ︸︸ ︷
f(x) = e2 ∧

2︷ ︸︸ ︷
f(y) = e3 ∧

3︷ ︸︸ ︷
f(e4) = e5 ∧

4︷ ︸︸ ︷
x = y ∧

e2 − e3 = e1︸ ︷︷ ︸
5

∧ e4 = 0︸ ︷︷ ︸
6

∧ e5 > a+ 2︸ ︷︷ ︸
7

e2 = e3︸ ︷︷ ︸
8

e1 = e4︸ ︷︷ ︸
9

a = e5︸ ︷︷ ︸
10

M F C rule
F no

0 1 2 3 4 5 6 7 F no by Propagate+
0 1 2 3 4 5 6 7 8 F no by T-Propagate (1, 2, 4 |=UF 8)

0 1 2 3 4 5 6 7 8 9 F no by T-Propagate (5, 6, 8 |=LRA 9)
0 1 2 3 4 5 6 7 8 9 10 F no by T-Propagate (0, 3, 9 |=UF 10)
0 1 2 3 4 5 6 7 8 9 10 F 7 ∨ 10 by T-Conflict (7, 10 |=LRA ⊥)

fail by Fail

90

example — convex theories

F :=

0︷ ︸︸ ︷
f(e1) = a ∧

1︷ ︸︸ ︷
f(x) = e2 ∧

2︷ ︸︸ ︷
f(y) = e3 ∧

3︷ ︸︸ ︷
f(e4) = e5 ∧

4︷ ︸︸ ︷
x = y ∧

e2 − e3 = e1︸ ︷︷ ︸
5

∧ e4 = 0︸ ︷︷ ︸
6

∧ e5 > a+ 2︸ ︷︷ ︸
7

e2 = e3︸ ︷︷ ︸
8

e1 = e4︸ ︷︷ ︸
9

a = e5︸ ︷︷ ︸
10

M F C rule
F no

0 1 2 3 4 5 6 7 F no by Propagate+
0 1 2 3 4 5 6 7 8 F no by T-Propagate (1, 2, 4 |=UF 8)

0 1 2 3 4 5 6 7 8 9 F no by T-Propagate (5, 6, 8 |=LRA 9)
0 1 2 3 4 5 6 7 8 9 10 F no by T-Propagate (0, 3, 9 |=UF 10)
0 1 2 3 4 5 6 7 8 9 10 F 7 ∨ 10 by T-Conflict (7, 10 |=LRA ⊥)

fail by Fail

90

example — non-convex theories

F :=

0︷ ︸︸ ︷
f(e1) = a ∧

1︷ ︸︸ ︷
f(x) = b ∧

2︷ ︸︸ ︷
f(e2) = e3 ∧

3︷ ︸︸ ︷
f(e1) = e4 ∧

1 ≤ x︸ ︷︷ ︸
4

∧ x ≤ 2︸ ︷︷ ︸
5

∧ e1 = 1︸ ︷︷ ︸
6

∧ a = b+ 2︸ ︷︷ ︸
7

∧ e2 = 2︸ ︷︷ ︸
8

∧ e3 = e4 + 3︸ ︷︷ ︸
9

a = e4︸ ︷︷ ︸
10

x = e1︸ ︷︷ ︸
11

x = e2︸ ︷︷ ︸
12

a = b︸ ︷︷ ︸
13

M F C rule
F no

0 · · · 9 F no by Propagate+
0 · · · 9 10 F no by T-Propagate (0, 3 |=UF 10)
0 · · · 9 10 F, 4 ∨ 5 ∨ 11 ∨ 12 no by I-Learn (|=LIA 4 ∨ 5 ∨ 11 ∨ 12)

0 · · · 9 10 • 11 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Decide
0 · · · 9 10 • 11 13 F, 4 ∨ 5 ∨ 11 ∨ 12 no by T-Propagate (0, 1, 11 |=UF 13)
0 · · · 9 10 • 11 13 F, 4 ∨ 5 ∨ 11 ∨ 12 7 ∨ 13 by T-Conflict (7, 13 |=UF ⊥)

0 · · · 9 10 13 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Backjump
0 · · · 9 10 13 11 F, 4 ∨ 5 ∨ 11 ∨ 12 no by T-Propagate (0, 1, 13 |=UF 11)

0 · · · 9 10 13 11 12 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Propagate
. . . (exercise)
fail · · · · · · by Fail

91

example — non-convex theories

F :=

0︷ ︸︸ ︷
f(e1) = a ∧

1︷ ︸︸ ︷
f(x) = b ∧

2︷ ︸︸ ︷
f(e2) = e3 ∧

3︷ ︸︸ ︷
f(e1) = e4 ∧

1 ≤ x︸ ︷︷ ︸
4

∧ x ≤ 2︸ ︷︷ ︸
5

∧ e1 = 1︸ ︷︷ ︸
6

∧ a = b+ 2︸ ︷︷ ︸
7

∧ e2 = 2︸ ︷︷ ︸
8

∧ e3 = e4 + 3︸ ︷︷ ︸
9

a = e4︸ ︷︷ ︸
10

x = e1︸ ︷︷ ︸
11

x = e2︸ ︷︷ ︸
12

a = b︸ ︷︷ ︸
13

M F C rule
F no

0 · · · 9 F no by Propagate+
0 · · · 9 10 F no by T-Propagate (0, 3 |=UF 10)
0 · · · 9 10 F, 4 ∨ 5 ∨ 11 ∨ 12 no by I-Learn (|=LIA 4 ∨ 5 ∨ 11 ∨ 12)

0 · · · 9 10 • 11 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Decide
0 · · · 9 10 • 11 13 F, 4 ∨ 5 ∨ 11 ∨ 12 no by T-Propagate (0, 1, 11 |=UF 13)
0 · · · 9 10 • 11 13 F, 4 ∨ 5 ∨ 11 ∨ 12 7 ∨ 13 by T-Conflict (7, 13 |=UF ⊥)

0 · · · 9 10 13 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Backjump
0 · · · 9 10 13 11 F, 4 ∨ 5 ∨ 11 ∨ 12 no by T-Propagate (0, 1, 13 |=UF 11)

0 · · · 9 10 13 11 12 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Propagate
. . . (exercise)
fail · · · · · · by Fail

91

example — non-convex theories

F :=

0︷ ︸︸ ︷
f(e1) = a ∧

1︷ ︸︸ ︷
f(x) = b ∧

2︷ ︸︸ ︷
f(e2) = e3 ∧

3︷ ︸︸ ︷
f(e1) = e4 ∧

1 ≤ x︸ ︷︷ ︸
4

∧ x ≤ 2︸ ︷︷ ︸
5

∧ e1 = 1︸ ︷︷ ︸
6

∧ a = b+ 2︸ ︷︷ ︸
7

∧ e2 = 2︸ ︷︷ ︸
8

∧ e3 = e4 + 3︸ ︷︷ ︸
9

a = e4︸ ︷︷ ︸
10

x = e1︸ ︷︷ ︸
11

x = e2︸ ︷︷ ︸
12

a = b︸ ︷︷ ︸
13

M F C rule
F no

0 · · · 9 F no by Propagate+

0 · · · 9 10 F no by T-Propagate (0, 3 |=UF 10)
0 · · · 9 10 F, 4 ∨ 5 ∨ 11 ∨ 12 no by I-Learn (|=LIA 4 ∨ 5 ∨ 11 ∨ 12)

0 · · · 9 10 • 11 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Decide
0 · · · 9 10 • 11 13 F, 4 ∨ 5 ∨ 11 ∨ 12 no by T-Propagate (0, 1, 11 |=UF 13)
0 · · · 9 10 • 11 13 F, 4 ∨ 5 ∨ 11 ∨ 12 7 ∨ 13 by T-Conflict (7, 13 |=UF ⊥)

0 · · · 9 10 13 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Backjump
0 · · · 9 10 13 11 F, 4 ∨ 5 ∨ 11 ∨ 12 no by T-Propagate (0, 1, 13 |=UF 11)

0 · · · 9 10 13 11 12 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Propagate
. . . (exercise)
fail · · · · · · by Fail

91

example — non-convex theories

F :=

0︷ ︸︸ ︷
f(e1) = a ∧

1︷ ︸︸ ︷
f(x) = b ∧

2︷ ︸︸ ︷
f(e2) = e3 ∧

3︷ ︸︸ ︷
f(e1) = e4 ∧

1 ≤ x︸ ︷︷ ︸
4

∧ x ≤ 2︸ ︷︷ ︸
5

∧ e1 = 1︸ ︷︷ ︸
6

∧ a = b+ 2︸ ︷︷ ︸
7

∧ e2 = 2︸ ︷︷ ︸
8

∧ e3 = e4 + 3︸ ︷︷ ︸
9

a = e4︸ ︷︷ ︸
10

x = e1︸ ︷︷ ︸
11

x = e2︸ ︷︷ ︸
12

a = b︸ ︷︷ ︸
13

M F C rule
F no

0 · · · 9 F no by Propagate+
0 · · · 9 10 F no by T-Propagate (0, 3 |=UF 10)

0 · · · 9 10 F, 4 ∨ 5 ∨ 11 ∨ 12 no by I-Learn (|=LIA 4 ∨ 5 ∨ 11 ∨ 12)
0 · · · 9 10 • 11 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Decide

0 · · · 9 10 • 11 13 F, 4 ∨ 5 ∨ 11 ∨ 12 no by T-Propagate (0, 1, 11 |=UF 13)
0 · · · 9 10 • 11 13 F, 4 ∨ 5 ∨ 11 ∨ 12 7 ∨ 13 by T-Conflict (7, 13 |=UF ⊥)

0 · · · 9 10 13 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Backjump
0 · · · 9 10 13 11 F, 4 ∨ 5 ∨ 11 ∨ 12 no by T-Propagate (0, 1, 13 |=UF 11)

0 · · · 9 10 13 11 12 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Propagate
. . . (exercise)
fail · · · · · · by Fail

91

example — non-convex theories

F :=

0︷ ︸︸ ︷
f(e1) = a ∧

1︷ ︸︸ ︷
f(x) = b ∧

2︷ ︸︸ ︷
f(e2) = e3 ∧

3︷ ︸︸ ︷
f(e1) = e4 ∧

1 ≤ x︸ ︷︷ ︸
4

∧ x ≤ 2︸ ︷︷ ︸
5

∧ e1 = 1︸ ︷︷ ︸
6

∧ a = b+ 2︸ ︷︷ ︸
7

∧ e2 = 2︸ ︷︷ ︸
8

∧ e3 = e4 + 3︸ ︷︷ ︸
9

a = e4︸ ︷︷ ︸
10

x = e1︸ ︷︷ ︸
11

x = e2︸ ︷︷ ︸
12

a = b︸ ︷︷ ︸
13

M F C rule
F no

0 · · · 9 F no by Propagate+
0 · · · 9 10 F no by T-Propagate (0, 3 |=UF 10)
0 · · · 9 10 F, 4 ∨ 5 ∨ 11 ∨ 12 no by I-Learn (|=LIA 4 ∨ 5 ∨ 11 ∨ 12)

0 · · · 9 10 • 11 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Decide
0 · · · 9 10 • 11 13 F, 4 ∨ 5 ∨ 11 ∨ 12 no by T-Propagate (0, 1, 11 |=UF 13)
0 · · · 9 10 • 11 13 F, 4 ∨ 5 ∨ 11 ∨ 12 7 ∨ 13 by T-Conflict (7, 13 |=UF ⊥)

0 · · · 9 10 13 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Backjump
0 · · · 9 10 13 11 F, 4 ∨ 5 ∨ 11 ∨ 12 no by T-Propagate (0, 1, 13 |=UF 11)

0 · · · 9 10 13 11 12 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Propagate
. . . (exercise)
fail · · · · · · by Fail

91

example — non-convex theories

F :=

0︷ ︸︸ ︷
f(e1) = a ∧

1︷ ︸︸ ︷
f(x) = b ∧

2︷ ︸︸ ︷
f(e2) = e3 ∧

3︷ ︸︸ ︷
f(e1) = e4 ∧

1 ≤ x︸ ︷︷ ︸
4

∧ x ≤ 2︸ ︷︷ ︸
5

∧ e1 = 1︸ ︷︷ ︸
6

∧ a = b+ 2︸ ︷︷ ︸
7

∧ e2 = 2︸ ︷︷ ︸
8

∧ e3 = e4 + 3︸ ︷︷ ︸
9

a = e4︸ ︷︷ ︸
10

x = e1︸ ︷︷ ︸
11

x = e2︸ ︷︷ ︸
12

a = b︸ ︷︷ ︸
13

M F C rule
F no

0 · · · 9 F no by Propagate+
0 · · · 9 10 F no by T-Propagate (0, 3 |=UF 10)
0 · · · 9 10 F, 4 ∨ 5 ∨ 11 ∨ 12 no by I-Learn (|=LIA 4 ∨ 5 ∨ 11 ∨ 12)

0 · · · 9 10 • 11 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Decide

0 · · · 9 10 • 11 13 F, 4 ∨ 5 ∨ 11 ∨ 12 no by T-Propagate (0, 1, 11 |=UF 13)
0 · · · 9 10 • 11 13 F, 4 ∨ 5 ∨ 11 ∨ 12 7 ∨ 13 by T-Conflict (7, 13 |=UF ⊥)

0 · · · 9 10 13 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Backjump
0 · · · 9 10 13 11 F, 4 ∨ 5 ∨ 11 ∨ 12 no by T-Propagate (0, 1, 13 |=UF 11)

0 · · · 9 10 13 11 12 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Propagate
. . . (exercise)
fail · · · · · · by Fail

91

example — non-convex theories

F :=

0︷ ︸︸ ︷
f(e1) = a ∧

1︷ ︸︸ ︷
f(x) = b ∧

2︷ ︸︸ ︷
f(e2) = e3 ∧

3︷ ︸︸ ︷
f(e1) = e4 ∧

1 ≤ x︸ ︷︷ ︸
4

∧ x ≤ 2︸ ︷︷ ︸
5

∧ e1 = 1︸ ︷︷ ︸
6

∧ a = b+ 2︸ ︷︷ ︸
7

∧ e2 = 2︸ ︷︷ ︸
8

∧ e3 = e4 + 3︸ ︷︷ ︸
9

a = e4︸ ︷︷ ︸
10

x = e1︸ ︷︷ ︸
11

x = e2︸ ︷︷ ︸
12

a = b︸ ︷︷ ︸
13

M F C rule
F no

0 · · · 9 F no by Propagate+
0 · · · 9 10 F no by T-Propagate (0, 3 |=UF 10)
0 · · · 9 10 F, 4 ∨ 5 ∨ 11 ∨ 12 no by I-Learn (|=LIA 4 ∨ 5 ∨ 11 ∨ 12)

0 · · · 9 10 • 11 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Decide
0 · · · 9 10 • 11 13 F, 4 ∨ 5 ∨ 11 ∨ 12 no by T-Propagate (0, 1, 11 |=UF 13)

0 · · · 9 10 • 11 13 F, 4 ∨ 5 ∨ 11 ∨ 12 7 ∨ 13 by T-Conflict (7, 13 |=UF ⊥)
0 · · · 9 10 13 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Backjump

0 · · · 9 10 13 11 F, 4 ∨ 5 ∨ 11 ∨ 12 no by T-Propagate (0, 1, 13 |=UF 11)
0 · · · 9 10 13 11 12 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Propagate

. . . (exercise)
fail · · · · · · by Fail

91

example — non-convex theories

F :=

0︷ ︸︸ ︷
f(e1) = a ∧

1︷ ︸︸ ︷
f(x) = b ∧

2︷ ︸︸ ︷
f(e2) = e3 ∧

3︷ ︸︸ ︷
f(e1) = e4 ∧

1 ≤ x︸ ︷︷ ︸
4

∧ x ≤ 2︸ ︷︷ ︸
5

∧ e1 = 1︸ ︷︷ ︸
6

∧ a = b+ 2︸ ︷︷ ︸
7

∧ e2 = 2︸ ︷︷ ︸
8

∧ e3 = e4 + 3︸ ︷︷ ︸
9

a = e4︸ ︷︷ ︸
10

x = e1︸ ︷︷ ︸
11

x = e2︸ ︷︷ ︸
12

a = b︸ ︷︷ ︸
13

M F C rule
F no

0 · · · 9 F no by Propagate+
0 · · · 9 10 F no by T-Propagate (0, 3 |=UF 10)
0 · · · 9 10 F, 4 ∨ 5 ∨ 11 ∨ 12 no by I-Learn (|=LIA 4 ∨ 5 ∨ 11 ∨ 12)

0 · · · 9 10 • 11 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Decide
0 · · · 9 10 • 11 13 F, 4 ∨ 5 ∨ 11 ∨ 12 no by T-Propagate (0, 1, 11 |=UF 13)
0 · · · 9 10 • 11 13 F, 4 ∨ 5 ∨ 11 ∨ 12 7 ∨ 13 by T-Conflict (7, 13 |=UF ⊥)

0 · · · 9 10 13 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Backjump
0 · · · 9 10 13 11 F, 4 ∨ 5 ∨ 11 ∨ 12 no by T-Propagate (0, 1, 13 |=UF 11)

0 · · · 9 10 13 11 12 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Propagate
. . . (exercise)
fail · · · · · · by Fail

91

example — non-convex theories

F :=

0︷ ︸︸ ︷
f(e1) = a ∧

1︷ ︸︸ ︷
f(x) = b ∧

2︷ ︸︸ ︷
f(e2) = e3 ∧

3︷ ︸︸ ︷
f(e1) = e4 ∧

1 ≤ x︸ ︷︷ ︸
4

∧ x ≤ 2︸ ︷︷ ︸
5

∧ e1 = 1︸ ︷︷ ︸
6

∧ a = b+ 2︸ ︷︷ ︸
7

∧ e2 = 2︸ ︷︷ ︸
8

∧ e3 = e4 + 3︸ ︷︷ ︸
9

a = e4︸ ︷︷ ︸
10

x = e1︸ ︷︷ ︸
11

x = e2︸ ︷︷ ︸
12

a = b︸ ︷︷ ︸
13

M F C rule
F no

0 · · · 9 F no by Propagate+
0 · · · 9 10 F no by T-Propagate (0, 3 |=UF 10)
0 · · · 9 10 F, 4 ∨ 5 ∨ 11 ∨ 12 no by I-Learn (|=LIA 4 ∨ 5 ∨ 11 ∨ 12)

0 · · · 9 10 • 11 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Decide
0 · · · 9 10 • 11 13 F, 4 ∨ 5 ∨ 11 ∨ 12 no by T-Propagate (0, 1, 11 |=UF 13)
0 · · · 9 10 • 11 13 F, 4 ∨ 5 ∨ 11 ∨ 12 7 ∨ 13 by T-Conflict (7, 13 |=UF ⊥)

0 · · · 9 10 13 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Backjump

0 · · · 9 10 13 11 F, 4 ∨ 5 ∨ 11 ∨ 12 no by T-Propagate (0, 1, 13 |=UF 11)
0 · · · 9 10 13 11 12 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Propagate

. . . (exercise)
fail · · · · · · by Fail

91

example — non-convex theories

F :=

0︷ ︸︸ ︷
f(e1) = a ∧

1︷ ︸︸ ︷
f(x) = b ∧

2︷ ︸︸ ︷
f(e2) = e3 ∧

3︷ ︸︸ ︷
f(e1) = e4 ∧

1 ≤ x︸ ︷︷ ︸
4

∧ x ≤ 2︸ ︷︷ ︸
5

∧ e1 = 1︸ ︷︷ ︸
6

∧ a = b+ 2︸ ︷︷ ︸
7

∧ e2 = 2︸ ︷︷ ︸
8

∧ e3 = e4 + 3︸ ︷︷ ︸
9

a = e4︸ ︷︷ ︸
10

x = e1︸ ︷︷ ︸
11

x = e2︸ ︷︷ ︸
12

a = b︸ ︷︷ ︸
13

M F C rule
F no

0 · · · 9 F no by Propagate+
0 · · · 9 10 F no by T-Propagate (0, 3 |=UF 10)
0 · · · 9 10 F, 4 ∨ 5 ∨ 11 ∨ 12 no by I-Learn (|=LIA 4 ∨ 5 ∨ 11 ∨ 12)

0 · · · 9 10 • 11 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Decide
0 · · · 9 10 • 11 13 F, 4 ∨ 5 ∨ 11 ∨ 12 no by T-Propagate (0, 1, 11 |=UF 13)
0 · · · 9 10 • 11 13 F, 4 ∨ 5 ∨ 11 ∨ 12 7 ∨ 13 by T-Conflict (7, 13 |=UF ⊥)

0 · · · 9 10 13 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Backjump
0 · · · 9 10 13 11 F, 4 ∨ 5 ∨ 11 ∨ 12 no by T-Propagate (0, 1, 13 |=UF 11)

0 · · · 9 10 13 11 12 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Propagate
. . . (exercise)
fail · · · · · · by Fail

91

example — non-convex theories

F :=

0︷ ︸︸ ︷
f(e1) = a ∧

1︷ ︸︸ ︷
f(x) = b ∧

2︷ ︸︸ ︷
f(e2) = e3 ∧

3︷ ︸︸ ︷
f(e1) = e4 ∧

1 ≤ x︸ ︷︷ ︸
4

∧ x ≤ 2︸ ︷︷ ︸
5

∧ e1 = 1︸ ︷︷ ︸
6

∧ a = b+ 2︸ ︷︷ ︸
7

∧ e2 = 2︸ ︷︷ ︸
8

∧ e3 = e4 + 3︸ ︷︷ ︸
9

a = e4︸ ︷︷ ︸
10

x = e1︸ ︷︷ ︸
11

x = e2︸ ︷︷ ︸
12

a = b︸ ︷︷ ︸
13

M F C rule
F no

0 · · · 9 F no by Propagate+
0 · · · 9 10 F no by T-Propagate (0, 3 |=UF 10)
0 · · · 9 10 F, 4 ∨ 5 ∨ 11 ∨ 12 no by I-Learn (|=LIA 4 ∨ 5 ∨ 11 ∨ 12)

0 · · · 9 10 • 11 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Decide
0 · · · 9 10 • 11 13 F, 4 ∨ 5 ∨ 11 ∨ 12 no by T-Propagate (0, 1, 11 |=UF 13)
0 · · · 9 10 • 11 13 F, 4 ∨ 5 ∨ 11 ∨ 12 7 ∨ 13 by T-Conflict (7, 13 |=UF ⊥)

0 · · · 9 10 13 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Backjump
0 · · · 9 10 13 11 F, 4 ∨ 5 ∨ 11 ∨ 12 no by T-Propagate (0, 1, 13 |=UF 11)

0 · · · 9 10 13 11 12 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Propagate

. . . (exercise)
fail · · · · · · by Fail

91

example — non-convex theories

F :=

0︷ ︸︸ ︷
f(e1) = a ∧

1︷ ︸︸ ︷
f(x) = b ∧

2︷ ︸︸ ︷
f(e2) = e3 ∧

3︷ ︸︸ ︷
f(e1) = e4 ∧

1 ≤ x︸ ︷︷ ︸
4

∧ x ≤ 2︸ ︷︷ ︸
5

∧ e1 = 1︸ ︷︷ ︸
6

∧ a = b+ 2︸ ︷︷ ︸
7

∧ e2 = 2︸ ︷︷ ︸
8

∧ e3 = e4 + 3︸ ︷︷ ︸
9

a = e4︸ ︷︷ ︸
10

x = e1︸ ︷︷ ︸
11

x = e2︸ ︷︷ ︸
12

a = b︸ ︷︷ ︸
13

M F C rule
F no

0 · · · 9 F no by Propagate+
0 · · · 9 10 F no by T-Propagate (0, 3 |=UF 10)
0 · · · 9 10 F, 4 ∨ 5 ∨ 11 ∨ 12 no by I-Learn (|=LIA 4 ∨ 5 ∨ 11 ∨ 12)

0 · · · 9 10 • 11 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Decide
0 · · · 9 10 • 11 13 F, 4 ∨ 5 ∨ 11 ∨ 12 no by T-Propagate (0, 1, 11 |=UF 13)
0 · · · 9 10 • 11 13 F, 4 ∨ 5 ∨ 11 ∨ 12 7 ∨ 13 by T-Conflict (7, 13 |=UF ⊥)

0 · · · 9 10 13 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Backjump
0 · · · 9 10 13 11 F, 4 ∨ 5 ∨ 11 ∨ 12 no by T-Propagate (0, 1, 13 |=UF 11)

0 · · · 9 10 13 11 12 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Propagate
. . . (exercise)

fail · · · · · · by Fail

91

example — non-convex theories

F :=

0︷ ︸︸ ︷
f(e1) = a ∧

1︷ ︸︸ ︷
f(x) = b ∧

2︷ ︸︸ ︷
f(e2) = e3 ∧

3︷ ︸︸ ︷
f(e1) = e4 ∧

1 ≤ x︸ ︷︷ ︸
4

∧ x ≤ 2︸ ︷︷ ︸
5

∧ e1 = 1︸ ︷︷ ︸
6

∧ a = b+ 2︸ ︷︷ ︸
7

∧ e2 = 2︸ ︷︷ ︸
8

∧ e3 = e4 + 3︸ ︷︷ ︸
9

a = e4︸ ︷︷ ︸
10

x = e1︸ ︷︷ ︸
11

x = e2︸ ︷︷ ︸
12

a = b︸ ︷︷ ︸
13

M F C rule
F no

0 · · · 9 F no by Propagate+
0 · · · 9 10 F no by T-Propagate (0, 3 |=UF 10)
0 · · · 9 10 F, 4 ∨ 5 ∨ 11 ∨ 12 no by I-Learn (|=LIA 4 ∨ 5 ∨ 11 ∨ 12)

0 · · · 9 10 • 11 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Decide
0 · · · 9 10 • 11 13 F, 4 ∨ 5 ∨ 11 ∨ 12 no by T-Propagate (0, 1, 11 |=UF 13)
0 · · · 9 10 • 11 13 F, 4 ∨ 5 ∨ 11 ∨ 12 7 ∨ 13 by T-Conflict (7, 13 |=UF ⊥)

0 · · · 9 10 13 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Backjump
0 · · · 9 10 13 11 F, 4 ∨ 5 ∨ 11 ∨ 12 no by T-Propagate (0, 1, 13 |=UF 11)

0 · · · 9 10 13 11 12 F, 4 ∨ 5 ∨ 11 ∨ 12 no by Propagate
. . . (exercise)
fail · · · · · · by Fail

91

references

suggested readings

1. C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli. Satisfiability Modulo Theories. In
Handbook of Satisfiability. IOS Press, 2009.

2. C. Barrett and C. Tinelli. Satisfiability Modulo Theories. In Handbook of Model
Checking. Springer, 2017.

3. R. Sebastiani. Lazy Satisfiability Modulo Theories. Journal on Satisfiability, Boolean
Modeling and Computation 3:141-224, 2007.

4. R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT Modulo Theories:
From an abstract Davis-Putnam-Logemann- Loveland procedure to DPLL(T).
Journal of the ACM, 53(6):937-977, 2006.

5. S. Krstić and A. Goel. Architecting Solvers for SAT Modulo Theories: Nelson-Oppen
with DPLL. In Proceeding of the Symposium on Frontiers of Combining Systems
(FroCoS’07). Volume 4720 of LNCS. Springer, 2007.

93

References

Gilles Audemard, Piergiorgio Bertoli, Alessandro Cimatti, Artur Korniłowicz, and
Roberto Sebastiani.
A SAT-based approach for solving formulas over boolean and linear
mathematical propositions.
In Andrei Voronkov, editor, Proceedings of the 18th International Conference on
Automated Deduction, volume 2392 of Lecture Notes in Artificial Intelligence,
pages 195–210. Springer, 2002.

Alessandro Armando, Claudio Castellini, and Enrico Giunchiglia.
SAT-based procedures for temporal reasoning.
In S. Biundo and M. Fox, editors, Proceedings of the 5th European Conference on
Planning (Durham, UK), volume 1809 of Lecture Notes in Computer Science,
pages 97–108. Springer, 2000.

Alessandro Armando, Jacopo Mantovani, and Lorenzo Platania.
Bounded model checking of software using SMT solvers instead of SAT solvers.
In Proceedings of the 13th International SPIN Workshop on Model Checking of
Software (SPIN’06), volume 3925 of Lecture Notes in Computer Science, pages
146–162. Springer, 2006.

94

Clark W. Barrett.
Checking Validity of Quantifier-Free Formulas in Combinations of First-Order
Theories.
PhD dissertation, Department of Computer Science, Stanford University,
Stanford, CA, Sep 2002.

R. Brummayer and A. Biere.
Boolector: An Efficient SMT Solver for Bit-Vectors and Arrays.
In S. Kowalewski and A. Philippou, editors, 15th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, TACAS’05, volume
5505 of Lecture Notes in Computer Science, pages 174–177. Springer, 2009.

Robert Brummayer and Armin Biere.
Lemmas on demand for the extensional theory of arrays.
Journal on Satisfiability, Boolean Modeling and Computation, 6:165–201, 2009.

M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. van Rossum, S. Schulz, and
R. Sebastiani.
An incremental and layered procedure for the satisfiability of linear arithmetic
logic.
In Tools and Algorithms for the Construction and Analysis of Systems, 11th Int.
Conf., (TACAS), volume 3440 of Lecture Notes in Computer Science, pages 317–333,
2005.

95

Marco Bozzano, Roberto Bruttomesso, Alessandro Cimatti, Tommi Junttila, Silvio
Ranise, Roberto Sebastiani, and Peter van Rossu.
Efficient satisfiability modulo theories via delayed theory combination.
In K.Etessami and S. Rajamani, editors, Proceedings of the 17th International
Conference on Computer Aided Verification, volume 3576 of Lecture Notes in
Computer Science, pages 335–349. Springer, 2005.

Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén, Alberto Griggio, Ziyad
Hanna, Alexander Nadel, Amit Palti, and Roberto Sebastiani.
A lazy and layered SMT(BV) solver for hard industrial verification problems.
In Werner Damm and Holger Hermanns, editors, Proceedings of the 19th
International Conference on Computer Aided Verification, volume 4590 of Lecture
Notes in Computer Science, pages 547–560. Springer-Verlag, July 2007.

J. R. Burch and D. L. Dill.
Automatic verification of pipelined microprocessor control.
In Procs. 6th Int. Conf. Computer Aided Verification (CAV), LNCS 818, pages 68–80,
1994.
Martin Brain, Vijay D’Silva, Alberto Griggio, Leopold Haller, and Daniel Kroening.
Deciding floating-point logic with abstract conflict driven clause learning.
Formal Methods in System Design, 45(2):213–245, 2014.

96

Clark W. Barrett, David L. Dill, and Aaron Stump.
Checking satisfiability of first-order formulas by incremental translation to SAT.
In J. C. Godskesen, editor, Proceedings of the International Conference on
Computer-Aided Verification, Lecture Notes in Computer Science, 2002.

R. E. Bryant, S. M. German, and M. N. Velev.
Processor Verification Using Efficient Reductions of the Logic of Uninterpreted
Functions to Propositional Logic.
ACM Transactions on Computational Logic, TOCL, 2(1):93–134, 2001.

C. Borralleras, S. Lucas, R. Navarro-Marset, E. Rodríguez-Carbonell, and A. Rubio.
Solving Non-linear Polynomial Arithmetic via SAT Modulo Linear Arithmetic.
In R. A. Schmidt, editor, 22nd International Conference on Automated Deduction ,
CADE-22, volume 5663 of Lecture Notes in Computer Science, pages 294–305.
Springer, 2009.

M. Bofill, R. Nieuwenhuis, A. Oliveras, E. Rodríguez-Carbonell, and A. Rubio.
A Write-Based Solver for SAT Modulo the Theory of Arrays.
In Formal Methods in Computer-Aided Design, FMCAD, pages 1–8, 2008.

97

Miquel Bofill, Robert Nieuwenhuis, Albert Oliveras, Enric Rodríguez-Carbonell,
and Albert Rubio.
The Barcelogic SMT solver.
In Computer-aided Verification (CAV), volume 5123 of Lecture Notes in Computer
Science, pages 294–298. Springer, 2008.

Clark Barrett, Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli.
Splitting on demand in sat modulo theories.
In M. Hermann and A. Voronkov, editors, Proceedings of the 13th International
Conference on Logic for Programming, Artificial Intelligence and Reasoning
(LPAR’06), Phnom Penh, Cambodia, volume 4246 of Lecture Notes in Computer
Science, pages 512–526. Springer, 2006.

Kshitij Bansal, Andrew Reynolds, Clark Barrett, and Cesare Tinelli.
A new decision procedure for finite sets and cardinality constraints in SMT.
In Nicola Olivetti and Ashish Tiwari, editors, Proceedings of the 8th International
Joint Conference on Automated Reasoning, Coimbra, Portugal, volume 9706 of
Lecture Notes in Computer Science, pages 82–98. Springer International
Publishing, 2016.

Clark Barrett, Igor Shikanian, and Cesare Tinelli.
An abstract decision procedure for satisfiability in the theory of recursive data
types.
Electronic Notes in Theoretical Computer Science, 174(8):23–37, 2007.

98

Martin Bromberger, Thomas Sturm, and Christoph Weidenbach.
Linear integer arithmetic revisited.
In International Conference on Automated Deduction, pages 623–637. Springer,
2015.
R. E. Bryant and M. N. Velev.
Boolean Satisfiability with Transitivity Constraints.
ACM Transactions on Computational Logic, TOCL, 3(4):604–627, 2002.

S. Cotton and O. Maler.
Fast and Flexible Difference Constraint Propagation for DPLL(T).
In A. Biere and C. P. Gomes, editors, 9th International Conference on Theory and
Applications of Satisfiability Testing, SAT’06, volume 4121 of Lecture Notes in
Computer Science, pages 170–183. Springer, 2006.

David C Cooper.
Theorem proving in arithmetic without multiplication.
Machine Intelligence, 7(91-99):300, 1972.

Bruno Dutertre and Leonardo de Moura.
A Fast Linear-Arithmetic Solver for DPLL(T).
In T. Ball and R. B. Jones, editors, 18th International Conference on Computer
Aided Verification, CAV’06, volume 4144 of Lecture Notes in Computer Science,
pages 81–94. Springer, 2006.

99

Bruno Dutertre and Leonardo De Moura.
A fast linear-arithmetic solver for DPLL(T).
In International Conference on Computer Aided Verification, pages 81–94.
Springer, 2006.

Martin Davis, George Logemann, and Donald Loveland.
A machine program for theorem proving.
Communications of the ACM, 5(7):394–397, July 1962.

L. de Moura and N. Bjørner.
Generalized, efficient array decision procedures.
In 9th International Conference on Formal Methods in Computer-Aided Design,
FMCAD 2009, pages 45–52. IEEE, 2009.

Leonardo De Moura and Nikolaj Bjørner.
Generalized, efficient array decision procedures.
In Formal Methods in Computer-Aided Design, pages 45–52. IEEE, 2009.

L. de Moura and H. Rueß.
Lemmas on Demand for Satisfiability Solvers.
In 5th International Conference on Theory and Applications of Satisfiability
Testing, SAT’02, pages 244–251, 2002.

100

David Detlefs, Greg Nelson, and James B Saxe.
Simplify: a theorem prover for program checking.
Journal of the ACM (JACM), 52(3):365–473, 2005.

Martin Davis and Hilary Putnam.
A computing procedure for quantification theory.
Journal of the ACM, 7(3):201–215, July 1960.

Andreas Fellner, Pascal Fontaine, Georg Hofferek, and Bruno Woltzenlogel Paleo.
Np-completeness of small conflict set generation for congruence closure.

C. Flanagan, K. R. M Leino, M. Lillibridge, G. Nelson, and J. B. Saxe.
Extended static checking for Java.
In Proc. ACM Conference on Programming Language Design and Implementation,
pages 234–245, June 2002.

Harald Ganzinger, George Hagen, Robert Nieuwenhuis, Albert Oliveras, and
Cesare Tinelli.
DPLL(T): Fast decision procedures.
In R. Alur and D. Peled, editors, Proceedings of the 16th International Conference
on Computer Aided Verification, CAV’04 (Boston, Massachusetts), volume 3114 of
Lecture Notes in Computer Science, pages 175–188. Springer, 2004.

101

Sicun Gao, Soonho Kong, and Edmund M Clarke.
Satisfiability modulo ODEs.
In Formal Methods in Computer-Aided Design (FMCAD), 2013, pages 105–112. IEEE,
2013.
Alberto Griggio.
A practical approach to satisfiability modulo linear integer arithmetic.
Journal on Satisfiability, Boolean Modeling and Computation, 8:1–27, 2012.

Liana Hadarean, Kshitij Bansal, Dejan Jovanović, Clark Barrett, and Cesare Tinelli.
A tale of two solvers: Eager and lazy approaches to bit-vectors.
In International Conference on Computer Aided Verification, pages 680–695.
Springer, 2014.

Liana Hadarean, Clark Barrett, Dejan Jovanović, Cesare Tinelli, and Kshitij Bansal.
A tale of two solvers: Eager and lazy approaches to bit-vectors.
In Armin Biere and Roderick Bloem, editors, Proceedings of the 26th
International Conference on Computer Aided Verification (CAV ’14), volume 8559
of Lecture Notes in Computer Science, pages 680–695. Springer, July 2014.

102

George Hagen and Cesare Tinelli.
Scaling up the formal verification of Lustre programs with SMT-based
techniques.
In A. Cimatti and R. Jones, editors, Proceedings of the 8th International
Conference on Formal Methods in Computer-Aided Design (FMCAV’08), Portland,
Oregon, pages 109–117. IEEE, 2008.

Dejan Jovanović and Clark Barrett.
Polite theories revisited.
In Chris Fermüller and Andrei Voronkov, editors, Proceedings of the 17th
International Conference on Logic for Programming, Artificial Intelligence and
Reasoning, volume 6397 of Lecture Notes in Computer Science, pages 402–416.
Springer-Verlag, 2010.

Dejan Jovanović and Leonardo de Moura.
Solving Non-linear Arithmetic.
In Bernhard Gramlich, Dale Miller, and Uli Sattler, editors, 6th International Joint
Conference on Automated Reasoning (IJCAR ’12), volume 7364 of Lecture Notes in
Computer Science, pages 339–354. Springer, 2012.

Dejan Jovanović and Leonardo de Moura.
Cutting to the chase.
Journal of automated reasoning, 51(1):79–108, 2013.

103

Sava Krstić and Amit Goel.
Architecting solvers for SAT modulo theories: Nelson-Oppen with DPLL.
In B. Konev and F. Wolter, editors, Proceeding of the Symposium on Frontiers of
Combining Systems (Liverpool, England), volume 4720 of Lecture Notes in
Computer Science, pages 1–27. Springer, 2007.

Adam Kiezun, Vijay Ganesh, Philip J Guo, Pieter Hooimeijer, and Michael D Ernst.
HAMPI: a solver for string constraints.
In Proceedings of the eighteenth international symposium on Software testing
and analysis, pages 105–116. ACM, 2009.

Tim King.
Effective Algorithms for the Satisfiability of Quantifier-Free Formulas Over Linear
Real and Integer Arithmetic.
PhD thesis, Courant Institute of Mathematical Sciences New York, 2014.

Shuvendu K. Lahiri and Madanlal Musuvathi.
An Efficient Decision Procedure for UTVPI Constraints.
In B. Gramlich, editor, 5th International Workshop on Frontiers of Combining
Systems, FroCos’05, volume 3717 of Lecture Notes in Computer Science, pages
168–183. Springer, 2005.

104

S. K. Lahiri, R. Nieuwenhuis, and A. Oliveras.
SMT Techniques for Fast Predicate Abstraction.
In T. Ball and R. B. Jones, editors, 18th International Conference on Computer
Aided Verification, CAV’06, volume 4144 of Lecture Notes in Computer Science,
pages 413–426. Springer, 2006.

Tianyi Liang, Andrew Reynolds, Cesare Tinelli, Clark Barrett, and Morgan Deters.
A DPLL(T) theory solver for a theory of strings and regular expressions.
In International Conference on Computer Aided Verification, pages 646–662.
Springer, 2014.

Baoluo Meng, Andrew Reynolds, Cesare Tinelli, and Clark Barrett.
Relational constraint solving in SMT.
In Leonardo de Moura, editor, Proceedings of the 26th International Conference
on Automated Deduction, volume 10395 of Lecture Notes in Computer Science,
pages 148–165. Springer, 2017.

Greg Nelson and Derek C. Oppen.
Simplification by cooperating decision procedures.
ACM Trans. on Programming Languages and Systems, 1(2):245–257, October 1979.

Greg Nelson and Derek C. Oppen.
Fast decision procedures based on congruence closure.
Journal of the ACM, 27(2):356–364, 1980.

105

Robert Nieuwenhuis and Albert Oliveras.
DPLL(T) with Exhaustive Theory Propagation and its Application to Difference
Logic.
In Kousha Etessami and Sriram K. Rajamani, editors, Proceedings of the 17th
International Conference on Computer Aided Verification, CAV’05 (Edimburgh,
Scotland), volume 3576 of Lecture Notes in Computer Science, pages 321–334.
Springer, July 2005.

R. Nieuwenhuis and A. Oliveras.
Fast Congruence Closure and Extensions.
Information and Computation, IC, 2005(4):557–580, 2007.

Robert Nieuwenhuis and Albert Oliveras.
Fast congruence closure and extensions.
Information and Computation, 205(4):557–580, 2007.

Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli.
Solving SAT and SAT Modulo Theories: from an Abstract
Davis-Putnam-Logemann-Loveland Procedure to DPLL(T).
Journal of the ACM, 53(6):937–977, November 2006.

Derek C. Oppen.
Complexity, convexity and combinations of theories.
Theoretical Computer Science, 12:291–302, 1980.

106

Christos H Papadimitriou.
On the complexity of integer programming.
Journal of the ACM (JACM), 28(4):765–768, 1981.

A. Pnueli, Y. Rodeh, O. Shtrichman, and M. Siegel.
Deciding Equality Formulas by Small Domains Instantiations.
In N. Halbwachs and D. Peled, editors, 11th International Conference on
Computer Aided Verification, CAV’99, volume 1633 of Lecture Notes in Computer
Science, pages 455–469. Springer, 1999.

Andrew Reynolds and Jasmin Christian Blanchette.
A decision procedure for (co)datatypes in SMT solvers.
Journal of Automated Reasoning, 58(3):341–362, 2016.

Christophe Ringeissen.
Cooperation of decision procedures for the satisfiability problem.
In F. Baader and K.U. Schulz, editors, Frontiers of Combining Systems:
Proceedings of the 1st International Workshop, Munich (Germany), Applied Logic,
pages 121–140. Kluwer Academic Publishers, March 1996.

107

Silvio Ranise, Christophe Ringeissen, and Calogero G. Zarba.
Combining data structures with nonstably infinite theories using many-sorted
logic.
In B. Gramlich, editor, Proceedings of the Workshop on Frontiers of Combining
Systems, volume 3717 of Lecture Notes in Computer Science, pages 48–64.
Springer, 2005.

A. Stump, C. W. Barrett, D. L. Dill, and J. R. Levitt.
A Decision Procedure for an Extensional Theory of Arrays.
In 16th Annual IEEE Symposium on Logic in Computer Science, LICS’01, pages
29–37. IEEE Computer Society, 2001.

Sanjit A. Seshia, Shuvendu K. Lahiri, and Randal E. Bryant.
A hybrid SAT-based decision procedure for separation logic with uninterpreted
functions.
In Proc. 40th Design Automation Conference, pages 425–430. ACM Press, 2003.

O. Strichman, S. A. Seshia, and R. E. Bryant.
Deciding Separation Formulas with SAT.
In E. Brinksma and K. G. Larsen, editors, 14th International Conference on
Computer Aided Verification, CAV’02, volume 2404 of Lecture Notes in Computer
Science, pages 209–222. Springer, 2002.

108

N. Tillmann and J. de Halleux.
Pex-White Box Test Generation for .NET.
In B. Beckert and R. Hähnle, editors, 2nd International Conference on Tests and
Proofs, TAP’08, volume 4966 of Lecture Notes in Computer Science, pages 134–153.
Springer, 2008.

Cesare Tinelli and Mehdi T. Harandi.
A new correctness proof of the Nelson–Oppen combination procedure.
In F. Baader and K. U. Schulz, editors, Frontiers of Combining Systems:
Proceedings of the 1st International Workshop (Munich, Germany), Applied Logic,
pages 103–120. Kluwer Academic Publishers, March 1996.

C. Tinelli.
A DPLL-based calculus for ground satisfiability modulo theories.
In G. Ianni and S. Flesca, editors, Proceedings of the 8th European Conference on
Logics in Artificial Intelligence (Cosenza, Italy), volume 2424 of Lecture Notes in
Artificial Intelligence. Springer, 2002.

Cesare Tinelli and Calogero Zarba.
Combining nonstably infinite theories.
Journal of Automated Reasoning, 34(3):209–238, April 2005.

109

C. Wang, F. Ivancic, M. K. Ganai, and A. Gupta.
Deciding Separation Logic Formulae by SAT and Incremental Negative Cycle
Elimination.
In G. Sutcliffe and A. Voronkov, editors, 12h International Conference on Logic for
Programming, Artificial Intelligence and Reasoning, LPAR’05, volume 3835 of
Lecture Notes in Computer Science, pages 322–336. Springer, 2005.

Harald Zankl and Aart Middeldorp.
Satisfiability of Non-linear (Ir)rational Arithmetic.
In Edmund M. Clarke and Andrei Voronkov, editors, 16th International Conference
on Logic for Programming, Artificial Intelligence and Reasoning, LPAR’10, volume
6355 of Lecture Notes in Computer Science, pages 481–500. Springer, 2010.

Aleksandar Zeljić, Christoph M Wintersteiger, and Philipp Rümmer.
Approximations for model construction.
In International Joint Conference on Automated Reasoning, pages 344–359.
Springer, 2014.

Aleksandar Zeljić, Christoph M Wintersteiger, and Philipp Rümmer.
Deciding bit-vector formulas with mcsat.
In International Conference on Theory and Applications of Satisfiability Testing,
pages 249–266. Springer, 2016.

110

	Introduction
	Theories
	Theory Solvers
	Extending Theory Solvers to QFFs
	Combining Theories and Their Solvers
	References

