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Abstract—When one goes from a geometrical statement to
an algebraic statement, the immediate translation is to replace
every point by a pair of coordinates, if in the plane (or more as
required). A statement with N points is then a statement with
2N (or 3N or more) variables, and the complexity of tools like
cylindrical algebraic decomposition is doubly exponential in the
number of variables. Hence one says “without loss of generality,
A is at (0,0)” and so on. How might one automate this, or turn
it into a procedure (and possibly even a formal proof)?

I. INTRODUCTION

Symmetry is at once a familiar concept (we
recognize it when we see it!) and a profoundly deep
mathematical subject. At its most basic, a symmetry
is some transformation of an object that leaves the
object (or some aspect of the object) unchanged.
[Sak09]

That quotation comes from a major survey of symmetry
in purely Boolean satisfiability problems, but our setting is
“Satisfiability Modulo Theories” over the real numbers, and
the desire to enhance this with techniques from Computer
Algebra, notably Cylindrical Algebraic Decomposition. See
[Á15], [ABB+16]. Here the situation is different in two,
complementary, respects.

1) It is not legitimate to discard a part of the Boolean
search space on the grounds that it is symmetric to
another, already searched, space, unless we know that this
symmetry carries through to the underlying theory.

2) Conversely, symmetries in the underlying theory may
exist, which either do not appear directly in the Boolean
formulation, or indeed are irrelevant to the Boolean for-
mulation, but may greatly simplify the underlying theory.

More specifically, it is the second kind of symmetry that this
paper is concerned with.

Many proofs, particularly of the more computational kind,
in mathematics contain a line of the form “without loss of
generality, we may assume . . . ” (often abbreviated w.l.o.g).
This is discussed in [Har09], who claims, we believe correctly,
that this means one of two, rather different, things:

A: non-degeneracy: for example “w.l.o.g. α 6= 0”, really
means1 “α = 0 is a special case, which you can easily
see for yourself, so I am not going to bother with it here”;

1However, it may also mean C: “α = 0 renders the result meaningless, so
we shall not consider it further”.

B: exploitation of symmetry: as in [Har09]’s opening ex-
ample of Schur’s inequality ∀a, b, c ∈ R, k ∈ N,

0 ≤ak(a−b)(a−c)+bk(b−a)(b−c)+ck(c−a)(c−b), (1)

where a typical proof might begin: “Without loss of
generality, let a ≤ b ≤ c”.

This paper is essentially concerned with the second case,
though, as we shall see, it is not possible to ignore the first,
and indeed a given statement might combine both in practice.

This is a very powerful form of human reasoning. [Har09]
asks, and substantially answers, the question of how it can
be incorporated into formal proof: here we ask the same
question for computation, notably in the context of Symboic
Computation and Satisfiability Checking [ABB+16].

II. EXPLOITATION OF SYMMETRY — DISCRETE

[Har09] explains the example above as follows.

If asked to spell this out in more detail, we might
say something like: Since ≤ is a total order, the
three numbers must be ordered somehow, i.e. we
must have (at least) one of a ≤ b ≤ c, a ≤ c ≤ b,
b ≤ a ≤ c, b ≤ c ≤ a, c ≤ a ≤ b or c ≤ b ≤ a.
But the theorem is completely symmetric between a,
b and c, so each of these cases is just a version of
the other with a change of variables, and we may as
well just consider one of them.

He then offers two possible formalisms:

• The phrase may be an informal shorthand saying
‘we should really do 6 very similar proofs here,
but if we do one, all the others are exactly analo-
gous and can be left to the reader’.
• The phrase may be asserting that ‘by a general

logical principle, the apparently more general case
and the special WLOG case are in fact equivalent
(or at least the special case implies the general
one)’.

He then argues that the second interpretation is closer to the
informal mathematics, and shows how to implement this as a
HOL-Light theorem, more precisely

` (∀xyz.Pxyz ⇒ Pyxz ∧ Pxzy)∧
(∀xyz.x <= y ∧ y <= z ⇒ Pxyz)

⇒ (∀xyz.Pxyz)
(2)

Note 1: There’s a subtlety here: in fact the statement is
invariant under S3, the symmetric group on {x, y, z}, but the



TABLE I. CELLS SATISFYING a ≤ b ≤ c

c < 0 b < c all
b = c a < c; a = c

c = 0 b < 0 a < b; a = b
b = 0 a < 0; a = 0

c > 0 b < 0 all
b = 0 a < c

0 < b < c all
b = c a < 0; a = 0; 0 < a < c; a = c

two permutations listed, xyz → yxz and xyz → xzy (in cycle
notation (x, y) and (y, z)), generate S3.

A. Does this help SC2?

Unfortunately (1) is not polynomial: we need to specialise
k. If we feed (1)|k=2 into Cylindrical Algebraic Decomposition
(the [CM14] implementation), we get 31 cells (as we do for
any even k: odd k give us 59 cells, but the conclusions are
similar): the major split is on how c compares with 0: c < 0
then splits on how b compares with c and 0 (five possibilities,
with b = c splitting a into five possibilities, and b = 0 splitting
on how a compares with c); c > 0 similarly, and c = 0 having
a three-way split on b, each having a three-way split on a.
Of these, the 14 listed in Table I satisfy a ≤ b ≤ c, either
totally, or, where underlined, only partially. Not only is this
ratio of 14/31 ≈ 45% disappointing compared with the naı̈ve
(not allowing for equality) 1/6 one might expect: if we split
the underlined cells to get precisely the cells with a ≤ b ≤ c,
the ratio would be 18/39 ≈ 46%.

B. How might we detect it?

The most obvious generalisation of Note 1 is the following
well-known result.

Proposition 1: The permutations (1, 2, . . . , n) and (1, 2)
generate Sn as a group acting on {1, 2, . . . , n}.

Corollary 1: Hence, if a statement P (x1, x2, . . . , xn)
is given, and P (x1, x2, . . . , xn) is logically equivalent to
P (x2, x1, . . . , xn) and to P (x2, . . . , xn, x1), it is sufficient to
prove

P (x1, x2, . . . , xn) ∧ x1 ≤ x2 ∧ x2 ≤ x3 ∧ · · · . (3)

Note 2: We have said “logically equivalent to”, rather than
just “equal to”, as we needed the laws of algebra (at least
commutativity of addition and multiplication) to show that (1)
was actually invariant.

III. EXPLOITATION OF SYMMETRY — CONTINUOUS

One of the most important ways in which such in-
variances are used in proofs is to make a convenient
choice of coordinate system. [Har09]

If a problmis intrinsically geometric, then the precise coordi-
nate system is irrelevant to the truth of the statement. It is this
sort of symmetry that we will look for in this section.

Let us consider the following example

Theorem 1 (Simson’s Theorem, [Wan96], [Mou16]): Let
D be on the circumcircle of the triangle ABC, let P , Q and

R be the points of AB, AC and BC where the line to D is
perpendicular. Then P , Q and R are collinear.

Let us consider just the first statement “Let D be on the
circumcircle of the triangle ABC”. One possible coordinati-
sation2 of this is (4).
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D := xA yB − xA yC − xB yA + xB yC + xC yA − xC yB
(4)

It is relatively easy (for a computer algebra system) to verify
that (4) is invariant if we replace all variables z by z+c. Hence
it is legitimate to choose yA = 0, which gives us (5).
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(5)
Again, it is relatively easy (for a computer algebra system)
to verify that (5) is invariant if we replace all variables z ∈
{xA, xB , xC , xD} by z + c. Hence it is legitimate to choose

2Obtained with Maple’s geometry[circumcircle] command.



TABLE II. CAD OF Rn FOR NUMERATORS OF (4)–(7)

[CM14] [McC84], [EWBD14]
Equation Cells Time Memory Cells Time Memory

(secs) MiB (secs) MiB
(7)|xA=1 37 0.14 11 245 1.86 108

(7) 107 0.47 26 589* 3.89 303
(6)|xB=1 319 3.48 256 30803* 433.20 31460

(6)|xB=16 319 3.53 290
(6)|xB=256 319 4.24 318

(6) 591 2.29 188 36531* 807.00 55000
(5) 591 2.80 235 — > 9000
(4) 591 4.12 341

The timings and memory usage come from Maple’s CodeTools[Usage], and hence
both have (up to) four significant figures.
∗ Warning that the input is not well-oriented.

xA = 0, which gives us (6).
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In fact, both [Wan96], [Mou16] coordinatise with A = (xA, 0)
and B = (−xA, 0), taking (implicit) advantage of the fact that
the problem is invariant under translation (so we can place the
midpoint of AB at (0, 0)) and rotation (so we can place A and
B on the x-axis). Then (4) becomes the simpler (7).
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One further step, which [Wan96], [Mou16] could have done,
and a computer system could certainly spot, is that the equation
is homogeneous, and hence we can pick, say, xA = 1.
However, whilst appearing to be a type B w.l.o.g., exploiting
symmetry under dilation, it is also asserting xA 6= 0, thus a
type A, or even type C, w.l.o.g. as well.

A. Does this help SC2?

The non-vanishing of the denominators in (4)–(7) essen-
tially corresponds to the non-degeneracy of the triangle ABC,
so it is legitimate to consider just the numerators. The resource
consumptions of Cylindrical Algebraic Decomposition, com-
puting a complete CAD of Rn on these are shown in Table
II.

Let us consider first the [CM14] timings. These show,
somewhat to the author’s surprise, that Cylindrical Algebraic
Decomposition is, at least in this example, unaffected in terms
of cell count by the translation w.l.o.g.s, though rotation ((7)
rather than (6)) and scaling (the substitution lines) help, at least
in terms of cell count.

We solved (6) with variable ordering x � y � xC �
yB � yC (i.e. yC is the first variable to be eliminated). The
different scalings were applied to (6) after (6)|xB=1 showed
quite large denominators, e.g. cell (1,1,1,2,1) has − 3710363

2097152 <
yB < − 7420725

4194304 , and hence the author hoped that rescaling
would reduce this problem. The effect is in fact negligeable:
in (6)|xB=16 the same cell has − 303093

131072 < yC < − 2424743
1048576 , and

in (6)|xB=256 we have − 27504107
1048576 < yC < − 13752053

524288 . As can
be seen, the overall effect on memory and time of changing
the scaling was for the worse.

The second set of timings were produced using the software
in [EWBD14], but with no special declarations, hence effec-
tively the projection of [McC84]. In several cases, this warned
that the projection was not well-oriented. Since the McCallum
projection is a superset of the Lazard projection, and this has
been recently [MPP16] been proved unconditionally correct,
we can ignore these. We observe that detecting the rotational
symmetry ((7) rather than (6)) had a much greater effect here
than it did for the [CM14] method.

The really surprising effect was the difference between (6))
and (5)). As far as the author could tell, the code was still
projecting when interrupted after 2 1

2 hours: at least is had
produced no warnings about orientation. This needs further
investigation.

B. How might we detect it?

The question of detection comes in several forms.

1D Invariance by translation by R can be detected, as
we did in going from (4) to (5), by checking that
adding c to all variables leaves the equation (or
system of equations) invariant. This will fail, of
course, if there are variables other than the results
of coordinatisation.

2D Having detected invariance by translation by R,
we can look for invariance by translation by R2 as
we did in going from (5) to (6), by checking that
adding c to a proper subset of the variables leaves
the equation (or system of equations) invariant. Of
course, the author “cheated” and translated all the
x variables based on variable name, but in practice
one would have to try all subsets (but not a subset
and its complement) of the set of variables.

3+D Though not present in our example, we could then
go on to detect invariance by translation by R3,
and so on. As we see in the discussion of rotation,
it is important to do so.

Scaling This is a consequence of homogeneity, and can
easily be detected. The problem is that this is also
a type A (or even C) w.l.o.g. as well as type B
one, and, having chosen xi as our dehonogenising
variable, we ought in principle to consider the two
cases xi = 1 and xi = 0. The second case, if
it does not collapse, is also homogeneous in the
remaining variables, so we can recurse.

2D Rot. If we know that we have 2D translation symmetry,
we might hope for 2D rotational symmetry as
well. Let us call the set of variables translated by
c in the search for 2D symmetry the “x” variables,
and its complement the set of “y” variables, and
assume that there are no more “x” variables
than “y” variables, which will occur if we do a
breadth-first search for such a set. If the problem
comes from coordinatisation of a 2D geometrical
problem, there should be as many “x” as “y”
variables — of couse whether these correspond
to the original x and y or vice versa is a matter
of chance, but from now on we shall drop the
quotes, implicitly assuming the correspondence,
not that it matters.



Then the question comes: which
yj ∈ {y1, . . . , ym} corresponds to which
xi ∈ {x1, . . . , xn}? Here we know of no better
answer than trying all m!/(m − n)! possibilities
for a complete assignment σ. We then replace all
pairs (xi, yσ(i)) by (cxi − syσ(i), cyσ(i) + sxi)
to practice a rotation3 by θ with c = cos θ,
s = sin θ, and apply c2 + s2 = 1. For the correct
assignment in our example, it is relatively easy
to demonstrate equality (in particular the result
is independent of c and s), and for incorrect
examples we get results that still contain c and s.

3D Rot. We have no examples of this, but the principles
are the same as above. Note that, if there really
is 3D symmetry, we should identify it, and then
choose triples (xi, yσ(i), zτ(i)), as assuming we
have merely 2D symetry, and rotating the x and
y but not the z, will fail.

IV. CONCLUSION

We have only considered one example so far, but intend to
study others. It is a “natural” example in that it comes from
2D geometry. It would be possible to build artificial examples
that had, for example, rotational symmetry but no translational
symmetry, but, in the spirit of [ABB+16], we have started with
natural problems. From the basis of this limited analysis, we
draw the following provisional conclusions.

It is possible to detect certain forms of symmetry simply
from the equations (though it would clearly be better to
detect them before coordinatisation if at all possible). For
the method of [CM14], detecting translational symmetry has
no effect on the cell count (and a modest effect on runtime
and memory), but seems to be a pre-requisite to efficient
detection of rotational symmetry, which is extremely helpful.
The method of [McC84] seems much more susceptible to the
number of variables, and hence all symmetry detection and
“w.l.o.g.” specialisation are helpful.
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