
Experience with Heuristics, Benchmarks &
Standards for Cylindrical Algebraic Decomposition

Matthew England∗, and James H. Davenport†,
∗Coventry University Faculty of Engineering, Environment and Computing, Coventry, CV1 2JH, U.K.

Email: Matthew.England@coventry.ac.uk
†University of Bath Department of Computer Science, Bath, BA2 7AY, U.K.

Email: J.H.Davenport@bath.ac.uk

Abstract—In the paper which inspired the SC2 project,
[E. Ábráham, Building Bridges between Symbolic Computation and
Satisfiability Checking, Proc. ISSAC ’15, pp. 1–6, ACM, 2015] the
author identified the use of sophisticated heuristics as a technique
that the Satisfiability Checking community excels in and from
which it is likely the Symbolic Computation community could
learn and prosper. To start this learning process we summarise
our experience with heuristic development for the computer
algebra algorithm Cylindrical Algebraic Decomposition. We also
propose and discuss standards and benchmarks as another area
where Symbolic Computation could prosper from Satisfiability
Checking expertise, noting that these have been identified as
initial actions for the new SC2 community in the CSA project,
as described in [E. Ábráham et al., SC2: Satisfiability Checking
meets Symbolic Computation (Project Paper), Intelligent Computer
Mathematics (LNCS 9761), pp. 28–43, Springer, 2015].

I. INTRODUCTION

This article is inspired by the SC2 project1, a new initiative
to forge a joint community from the existing fields of Symbolic
Computation and Satisfiability Checking. For further details
on the project we refer the reader to:

• [2] which introduced the two fields, describes some
of the challenges and opportunities from working
together, and outlines planned project actions; and

• [1] the accompanying paper to an invited talk at
ISSAC 2015 which inspired the creation of the new
project and community.

Within [1] the author outlines the strengths and weaknesses of
the two communities, writing in the introduction:

“Symbolic Computation is strong in providing pow-
erful procedures for sets (conjunctions) of arithmetic
constraints, but it does not exploit the achievements
in SMT solving for efficiently handling logical frag-
ments, using heuristics and learning to speed-up the
search for satisfying solutions.”

By heuristic the we mean a practical method to make a choice
which is not guaranteed to be optimal. Although Computer
Algebra Systems prize correctness and exact solutions there
is still much scope for the use of heuristics and statistical
methods in symbolic computation algorithms: both for tuning
how individual algorithm are run and for selecting a particular
algorithm to use in the first place. In regards to the latter point,

1http://www.sc-square.org/

we note that the solve procedures in Computer Algebra Sys-
tems are really meta-algorithms: algorithms to select specific
procedures to use based on problem parameters. Although
the individual procedures are usually well documented within
the scientific literature we are not aware of any publications
describing these meta-algorithms.

Another topic where Symbolic Computation might benefit
from experience in Satisfiability Checking is standards and
benchmarks. Competitions based on these form an integral
part of the Satisfiability Checking community, and may have
contributed to the remarkable progress made in practical al-
gorithms. The lack of a comparable focus for the Symbolic
Computation community was acknowledged in [2]. However,
recent experiments have suggested the benchmarks for non-
linear real arithmetic are insufficient and the development of
new standards and benchmarks for the joint community has
been identified as a key SC2 project action in [2, Section 3.3].

In the present paper we outline our experience of these
issues for a single Symbolic Computation algorithm, Cylindri-
cal Algebraic Decomposition (CAD). The aim of the paper is
to instigate the learning process from the Satisfiability Check-
ing community by illustrating the current use of heuristics,
benchmarks and standards in (at least one area of) Symbolic
Computation and posing some questions. We start with a
summary of the necessary background on CAD in Section II,
then survey work with heuristics in CAD in Section III and
our experience with standards and benchmarks in Section IV.
We finish with conclusions and questions in Section V.

II. CYLINDRICAL ALGEBRAIC DECOMPOSITION

A. Definition

A Cylindrical Algebraic Decomposition (CAD) is a decom-
position of Rn into cells (connected subsets). By algebraic
we mean semi-algebraic: i.e. each cell can be described with
a finite sequence of polynomial constraints. Finally, the cells
are arranged cylindrically, meaning the projections of any
pair, with respect to the variable ordering in which the CAD
was created, are either equal or disjoint. We assume variables
labelled according to their ordering (so the projections con-
sidered are (x1, . . . , x`) → (x1, . . . , xk) for k < `) with the
highest ordered variable present said to be the main variable.
Hence CADs can be represented in a tree like format branching
on the semi-algebraic conditions involving increasing main
variable, as in the example below (with the branching from
right to left; all √ indicating the positive root; and the tuples



on the left sample points of the cells).

(−2, 0) x < −1


(−1,−1) y < 0

(−1, 0) y = 0

(−1, 1) 0 < y

x = −1



(0,−2) y < −
√
−x2 + 1

(0,−1) y = −
√
−x2 + 1

(0, 0) −
√
−x2 + 1 < y <

√
−x2 + 1

(0, 1) y = +
√
−x2 + 1

(0, 2)
√
−x2 + 1 < y

−1 < x < 1


(1,−1) y < 0

(1, 0) y = 0

(1, 1) 0 < y

x = 1

(2, 0) 1 < x

A CAD is produced to be invariant for input; originally sign-
invariant for a set of input polynomials (so on each cell each
polynomial is positive, zero or negative). The example above
is a sign invariant CAD for the polynomial x2+y2−1 defining
the unit circle. More recently CADs have been produced truth-
invariant for input Boolean-valued polynomial formulae. A
sign-invariant CAD for the polynomials in a formula is also
truth-invariant for the formula; but we can often achieve truth-
invariance with far less cells. For example suppose we need a
CAD truth-invariant for the formula

x2 + y2 − 1 = 0 ∧ (x− 1)2 + y2 − 1 = 0.

A sign-invariant CAD would require 55 cells (with the full
dimensional ones shown on the left of Figure 1). However, a
truth-invariant CAD would need only 7 cells: 2 of which are
full dimension (as on the right of Figure 1) and 5 more to
decompose the line x = 1

2 at the points of intersection.

B. Computation

CAD construction usually involves two phases. The first
projection, applies operators recursively on polynomials, start-
ing with the input. Each time the operator produces a set
with one less variable which together define the projection
polynomials. These are used in the second phase, lifting, to

Fig. 1. Example visualising sign and truth-invariant CADs

build CADs of increasing dimension. First a CAD of R1 is
built by splitting on the real roots of the univariate polynomials
(those in x1 only). Next, a CAD of R2 is built by repeating
the process over each cell in R1 with the bivariate polynomials
in (x1, x2) evaluated at a sample point of the cell in R1; and
the process is repeated until a CAD of Rn is produced. We
call the cells where a polynomial vanishes sections and those
regions in-between sectors, which together form the stack over
the cell. In each lift we extrapolate the conclusions drawn from
working at a sample point to the whole cell requiring validity
theorems for the projection operator used.

CAD cells are represented by at least a sample point (as
in the left of the example above), and an index: a list of
positive integers with each integer indicating the section or
stack each variable is within (in reference to the ordered roots
of the projection polynomials). Some implementations will
also encode the full algebraic description within each cell.

CAD was originally introduced by Collins for quantifier
elimination (QE) in real closed fields [4]. Although CAD con-
struction has complexity doubly exponential in the number of
variables [26], applications range from parametric optimisation
[34] and epidemic modelling [16], to reasoning with multi-
valued functions [24] and the derivation of optimal numerical
schemes [33]. There have been many improvements to Collins’
original approach most notably refinements to the projection
operators [50] [10], [53]; early termination of lifting [22]
[62]; and symbolic-numeric schemes [58], [42]. Some recent
advances include dealing with multiple formulae [7], [8]; local
projection [14], [60]; and decompositions via complex space
[21], [6]. For a more detailed introduction to CAD see e.g. [8].

III. HEURISTIC USE FOR CAD

A. Choosing the variable ordering

The most well known choice required for CAD is that
of the variable ordering, which the cylindricity is defined
with respect to. This determines the order in which variables
are eliminated during projection and the subspaces through
which CADs are built incrementally during lifting. When using
CAD for QE we must project variables in the order they are
quantified, but we are free to project the other variables in any
order (and to change the order within quantifier blocks).

The variable ordering used can have a great effect on the
output produced. For example, let f := (x − 1)(y2 + 1) − 1
and consider the minimal sign-invariant CAD in each variable
ordering, as visualised in Figure 2. In each case we project
down with the left figure projecting x first and the right y.
In this toy example the “wrong” choice more than doubles
the number of cells, while numerous experiments have shown
that for larger examples the choice can determine whether a
problem is tractable (see for example the experimental results
in [8]). At the extreme end of this observation, [15] defined
a class of examples where changing variable ordering would
change the number of cells required from constant to doubly
exponential in the number of variables.

Several heuristics have been developed to choose the variable
ordering, including:

Brown: Use the following criteria, starting with the first
and breaking ties with successive ones:



(1) Eliminate variable if lowest overall degree.
(2) Eliminate variable if lowest (maximum) total

degree in terms in which it occurs.
(3) Eliminate variable if smallest number of terms

contains it.
Suggested by Brown in [13, Section 5.2].

sotd: For all admissible orderings, calculate the projec-
tion set and choose the one with smallest sum of
total degrees for each of the monomials in each
of the polynomials [27]. Performs well but more
costly than Brown. A greedy alternative is to
allocate one variable of the ordering at a time by
projecting each unallocated variable and choosing
the one which increases the sotd least.

ndrr: As with sotd construct the full projection set
and choose the ordering whose set has the least
number of distinct real roots of the univariate
polynomials within [9]. Even more costly than
sotd, but sensitive to the real geometry and
shown to assist with examples where the sotd
heuristic failed.

The papers cited each contain experimental results demonstrat-
ing their worth. In [39] the results of an experiment comparing
the 3 on a data set of over 7000 examples were reported. The
experiments showed Brown selecting the best ordering (as
measured by lowest cell count) more often than the others.
However a key finding was that there were substantial subsets
of examples for which each heuristic did best. Further, when
calculating the saving made by the heuristics (compared to the
average cell count of the different orderings) the authors of [39]
found that sotd actually made a greater saving for quantified
problems on average (i.e. while Brown was superior on
more examples, sotd was superior on examples with greater
savings on offer). Together, this meant that recommending one
heuristic at the expense of all others was not possible.

If the minimal cell count is a priority then one further
approach, suggested in [64] is to compute the full dimensional
cells for each possible ordering and pick the ordering with the
minimum to derive a full CAD. Computing full dimensional
cells avoids any work with algebraic numbers and so is not
as costly as may be thought, although it does require more
computation than ndrr. It was noted in [64] that the full-
dimensional cell calculations could be done in parallel with the
first to finish extended to a full CAD and the rest discarded.

B. Choices with equational constraints

1) Equational constraints: There are several ways in which
we can modify CAD constriction to achieve truth-invariance
(rather than sign-invariance) including refining sign-invariant
CAD and truncating lifting once the truth-value is determined.
A particularly fruitful approach is to take advantage of the

Fig. 2. CADs under different variable orderings

Booloean structure of a formula through the identification of
Equational Constraints (ECs): polynomial equations logically
implied by a formula. Reduced projection operators (using a
subset of the usual polynomials) have been proven valid for use
when an EC is present with corresponding main variable [51],
[52]. Results in [29], [31] suggest that the double exponent
in the complexity bound decreases by 1 for each EC used,
although this is restricted to primitive ECs meaning the classic
lower-bound examples of [26], [15] are not violated [25].

These reduced operators can only use one EC for each
projection, so when there are multiple we must make a
designation. Note that ECs need not appear explicitly as atoms
(formula with no logical connectives) in the input formula, but
could instead be implicit. For example, the resultant of any two
ECs in the same main variable is itself an EC (not containing
that variable) [52]. Propagating ECs in this way allows for the
maximal use of the reduced operators. However, it can require
multiple choices of which EC to designate at each projection.
Section 4 of [29] described such an example where the wrong
designation could make add tens of thousands to the cell count
of the final output, making it more than 15 times bigger.

2) Making the designation: In [9] the authors experimented
in using the sotd and ndrr measures on this question (the
Brown heuristic was not applicable since it acted only on the
input polynomials). In general they were useful in identify-
ing the optimal designation, although both could be misled.
As described above these heuristics essentially complete the
projection stage of the algorithm for each ordering, which
although minimal in comparison to the lifting stage, is likely
far more computation than would normally be undertaken by a
heuristic. This becomes an issue when the number of choices
grows. Further, for these experiments a fixed variable ordering
was used, and the question of addressing the two choices
together (when the number of possibilities multiplies) has not
been addressed.

3) Designation in TTICAD: In [7], [8] a truth-table invari-
ant CAD (TTICAD) is defined as a CAD on whose cells
the truth-table for a set of formulae is invariant. A new
operator was presented which takes advantage of ECs present
in the separate formulae (with [7] developing the theory in the
case where all had an EC and [8] extending to the general
case). The operator essentially recognises when to consider
the interaction of polynomials from different formulae. If an
individual formula has multiple ECs then, as above, we must
choose just one to designate for each projection.

C. Choices for CAD by Regular Chains

Recently an alternative CAD computational scheme has
been proposed where, instead of projection and lifting, we: first
cylindrically decompose complex space according to whether
polynomials are zero or not using the theory of triangular
decomposition by regular chains; and then refine to a CAD of
real space. This was first proposed in [21] with an incremental
version described in [20] and an extension to TTICAD in [6].
All versions are implemented within the RegularChains
Library2 with a summary in [19].

Most of the heuristics outlined earlier in this section are not
directly applicable to the CAD by Regular Chains computation

2www.regularchains.org



scheme (as there is no “cheap” projection phase to derive
information from). We outline some of the new heuristics
developed for the choices this scheme involves.

1) Variable order in TTICAD by Regular Chains: This
problem was considered in [30]. Two existing heuristics were
compared: that of Brown introduced in Section III-A and
another, denoted Triangular, already in use for other algorithms
in the RegularChains Library. Triangular chooses first the
variable with lowest degree occurring in the input; then breaks
ties by choosing variables for which leading coefficients have
lowest total degree; and finally sum of degrees in input. In
addition the heuristics sotd and ndrr discussed above were
used (even though the sets of projection polynomials built were
not explicitly used later). The experiments found sotd to
make the best choices, but due to its higher costs the Triangular
heuristic was the most efficient choice overall. However, as
with the experiments discussed in Section III-A, the example
set could be subdivided into groups where different heuris-
tics were dominant. Further experimentation and illustrative
examples in [30] led to the development of a new heuristic
(composed from parts of the others) tailored to the variable
ordering choice for TTICAD by Regular Chains [6].

2) Constraint order in TTICAD by Regular Chains: The
latest CAD algorithm within the RegularChains Library
[20] processes constraints incrementally when building the
complex cylindrical decomposition and thus are sensitive to
the order in which constraints are considered. Further, in the
case of TTICAD we have the extra question of what order to
consider the formulae in. These issues were studied in [28]
which considered the following example.

Assume the ordering x ≺ y and consider

f1 := x2 + y2 − 1,

f2 := 2y2 − x,
f3 := (x− 5)2 + (y − 1)2 − 1,

φ1 := f1 = 0 ∧ f2 = 0,

φ2 := f3 = 0.

The polynomials are graphed within the plots of Figure 3. If
we want to study the truth of φ1 and φ2 (or say a parent
formula φ1∨φ2) we need a TTICAD to take advantage of the
ECs. There are two possible orders for the formulae and two
possible to consider the constraints within φ1. Hence 4 possible
ways we could calculate a TTICAD by Regular Chains. Below
we show how many cells are produced by proceeding in the
orders indicated, with the two dimensional cells shown in
Figure 3.

• φ1 → φ2 and f1 → f2: 37 cells.

• φ1 → φ2 and f2 → f1: 81 cells.

• φ2 → φ1 and f1 → f2: 25 cells.

• φ2 → φ1 and f2 → f1: 43 cells.

No previously discussed heuristic was applicable to this
problem. For choosing which EC to process first in a given
formula an argument could be made for measuring a set
of polynomials shown to be rendered sign-invariant by the
algorithm (leading to Heuristic 1 in [28]). The only heuristic
derived for the other choices was to measure the sum of

Fig. 3. Visualisations of the four TTICADs which can be built using the
Regular Chains Library for the example in this section. The figures on the top
have φ1 → φ2 and those on the bottom φ2 → φ1. The figures on the left
have f1 → f2 and those on the right f2 → f1.

degrees of the polynomials in the complex cylindrical decom-
position created. As with the ndrr and full dimensional cells
heuristics above; this requires more computation than is ideal
(although it is the real root refinement that makes up the bulk
of the CAD by Regular Chains computation time).

D. Gröbner Basis preconditioning

A Gröbner Basis G is a particular generating set of an
ideal I defined with respect to a monomial ordering [17]. One
definition is that the ideal generated by the leading terms of I
is generated by the leading terms of G. Gröbner Bases (GB)
are used extensively to study ideals and the polynomials that
define them as they allow properties such as dimension and
number of zeros to be easily deduced. Although like CAD
the calculation of GB is doubly exponential in the worst case
[48], GB computation is now mostly trivial for any problem
on which CAD construction is tractable.

It was first observed in [18] that replacing a conjunction of
polynomial equalities in a CAD problem by their GB (logically
equivalent) could be useful for the CAD computation. Of
the ten test problems studied: 6 were improved by the GB
preconditioning (speed-up varying from 2- to 1700-fold); 1
problem resulted in a 10-fold slow-down; 1 timed out when
GB preconditioning was applied, but would complete without;
and 2 were intractable both for CAD construction alone and the
GB preconditioning step. The problem was revisited in [66].
As expected, there had been a big decrease in the computation
timings, especially for the GB. However, it was still the case
that 2 of the problems were hindered by GB preconditioning.

The key conclusion is that GB preconditioning will on
average benefit CAD (sometimes very significantly) but could
on occasion hinder it (to the point of making a tractable CAD
problem intractable). We are yet to understand why this occurs,
but the authors of [66] did develop a metric to predict when it
will. They defined the Total Number of Indeterminates (TNoI)
of a set of polynomials A as

TNoI(A) =
∑
a∈A

NoI(a)

where NoI(a) is the number of indeterminates in a polynomial
a. The heuristic is to build a CAD for the preconditioned
polynomials only if the TNoI decreased. For most of their
test problems the heuristic made the correct choice, but there
were examples to the contrary.



E. Use of machine learning

Finally, we note recent experiments using machine learn-
ing, specifically support vector machines (see for example
[56]), to make choices for CAD construction:

• In [40] the authors used an SVM to choose be-
tween the three heuristics for CAD variable ordering
outlined in Section III-A. Simple problem features
were selected (e.g. degrees, proportion of monomials
containing each variable) and parameter optimisation
was applied to maximise Matthews’ Correlation Co-
efficient [47]. Over 7000 examples were studied, and
over the 1721 reserved for the test set the machine
learned choice was found to outperform each heuristic
individually on average.

• In [38] the authors used an SVM to predict when
it will be useful to precondition a CAD problem
with GB (see Section III-D). The features used were
from both the original input and the GB: so the
study was answering the question should we use this
GB rather than should we compute it (relevant since
the GB computation was trivial for the problem set
involved). The machine learned choice outperformed
both using GB universally, and the human defined
TNoI heuristic.

We also note that a recent paper [45] applied a support vector
machine (seeded with the problem features from [40]) to
suggest the order in which QE should be performed on sub-
formulae of a non-prenex formula. Experimental results on
more than 2,000 non-trivial examples showed that machine
learning was doing better than the human derived heuristics,
following appropriate parameter optimisation.

IV. STANDARDS AND BENCHMARKS

A. History of benchmarking in computer algebra

The Computer Algebra community has occasionally recog-
nised the importance of benchmarks. The PoSSo and FRISCO
projects aimed to do this for polynomials systems and
symbolic-numeric problems respectively in the 1990s. PoSSO,
with which the second author was involved, collected a series
of benchmark examples for GB, and a descendant of these
can still be found online3. However, this does not appear
to be maintained; and the polynomials are not stored in a
machine-readable form. Polynomials from this list still crop
up in various papers, but there is no systematic reference,
and it is not clear whether people are really referring to the
same example. Several of the examples are families, which
is good but means that a benchmark has to contain specific
instances. The PoSSo project did its best to do “level playing
field” comparisons, but at the time different implementations
ran on different hardware / operating systems meaning this
was not really achievable. The environment is much simpler
these days, and it would be feasible to organise true contests.

The topic of benchmarking in computer algebra has most
recently been taken up by the SymbolicData Project4 [35]
which is beginning to build a database of examples in XML

3http://www-sop.inria.fr/saga/POL/
4www.symbolicdata.org

format (although currently not with any suitable for CAD).
The software described in [36] was built to translate problems
in that database into executable code for various computer
algebra systems. The authors of [36] discuss the peculiarities of
computer algebra that make benchmarking particularly difficult
including the fact that results of computations need not be
unique and that the evaluation of the correctness of an output
may not be trivial (or may be the subject of research itself).

A final point to note is that while SAT / SMT-solvers have
only a few clear possible answers (e.g. sat, unsat, unknown)
in computer algebra there is also the quality of the result to
consider (e.g., size of quantifier-free formula produced). With
CAD the output size is usually correlated to computation time,
but this is not always the case with other algorithms.

B. The present authors’ recent experience with CAD

In our work we have taken various approaches to experi-
menting with CAD:

1 (a) Test new results on examples previously used to evaluate
CAD algorithms.

For example, the experiments in [66] started with the 10
examples in [18] while [24] and [63] focussed on classic
examples from [44] and [23]. The latter were derived from
applications of CAD while the former seem to be a collection
of geometric problems invented by the authors. Other papers
that have contributed such test problems include [5], [49]
[11], [27]. We wonder whether historic repetition within the
literature is alone a strong enough reason to be benchmark?

In [65], [61] an attempt was made to gather together all
those test examples in the literature for CAD, along with ref-
erences of their first appearance in the literature and encodings
for some computer algebra systems.

1 (b) Supplement existing examples with modified versions
suitable for demonstrating the feature in question.

In [7], [8] the new TTICAD algorithm that was the subject of
the paper offered an improvement on the state of the art for
examples consisting of multiple formulae; or a single formulae
in disjunctive normal form. Such examples had not been the
topic of any CAD papers before and no existing examples were
capable of demonstrating the savings on offer. The experiments
produced in these papers were made of up two sets:

• Formulae produced to describe the branch cuts of
multivalued functions in a proposed simplification
formula [30], with CAD to be applied so that the
complex domain could be decomposed into regions
where the functions were univariate, and thus the
formula applicable or not.

• Formulae produced by adapting the logical connectors
in previous examples from the literature in [65] so that
conjunctions became disjunctions.

Clearly the former set is of great interest as they represent
a real example for the algorithms; but they all conform to a
single structure and so are arguably too uniform to alone draw
broad conclusions from. The second set were produced to be
somehow close to the accepted test examples of the literature,



but whether this is any better than inventing a new examples
from scratch is debatable.

2 Derive new sets of random examples

A recent experiment using machine learning [40], [38] (see
Section III-E) exposed a shortcoming in the above techniques.
To train the SVMs hundreds of examples are required (with
hundreds more then needed for validation and testing). The
dataset from the literature in [65] contained not nearly enough
examples and while the datasets discussed in the next section
were sufficient for the first experiment in [40] they proved
too uniform for [38]. We were left with no choice but to
generate large quantities of new examples, which we did using
the random polynomial generator in MAPLE. We had applied
this technique also in [28], [30] receiving positive feedback
from reviewers for the technique; but the initial reviews of
[38] were all negative on the use of random data. It seems the
appropriateness of this technique varies with the community
(conference) in question. We opine that had we used data from
the example bank of MetiTarski examples discussed in the next
section then reviewers may have praised the focus on examples
from a real application; even though MetiTarski themselves
derive examples for benchmarks using random polynomials.

C. Sources of large benchmarks sets

We note some other sources of large sets of benchmark
problems that represent real applications of CAD:

• MetiTarski5 [3], [54] is an automatic theorem prover
designed to prove theorems involving real-valued spe-
cial functions (such as log, exp, sin, cos and sqrt). In
general this theory is undeciadable but MetiTarski is
able to solve many problems by applying real polyno-
mial bounds and then using real quantifier elimination
tools like CAD. Applications of MetiTarski in turn
derive examples for CAD.

• The NRA (non-linear real arithmetic) category of the
SMT-LIB library6 which according to [43] consists
mostly of problems originating from attempts to prove
termination of term-rewrite systems.

These two data sets where included in the nlsat Bench-
mark Set7 produced to evaluate the work in [43]. This also
included verification conditions from the Keymaera [55] and
parametrized generalizations of the problem from [37]. To-
gether this dataset had many thousands of problems. However,
we note that the problems come from a small number of classes
and may have some hidden uniformity.

As mentioned above, the nlsat dataset was unsuitable to
use for our machine learning experiment in [38]. Every single
problem within that had more than one equality was aided
by GB preconditioning, in fact a great many simply had a
GB containing only 1 indicating the problem had no solution.
Previous experiments on small example sets suggested GB
preconditioning sometimes harms CAD computation and this
was verified by analysis of a large randomly generated dataset

5https://www.cl.cam.ac.uk/∼lp15/papers/Arith
6http://smtlib.cs.uiowa.edu/
7http://cs.nyu.edu/∼dejan/nonlinear/

in [38]. Thus while the nlsat dataset is an excellent starting
point it needs to be expanded to be less uniform.

We finish this section by noting one possible source of
examples for the future.

• The Todai Robot Project8 [46] is a Japanese AI project
that aims to have an artificial intelligence pass the
entrance examination for the University of Tokyo by
2021. A majority of questions on the Mathematics
exam can be resolved by real quantifier elimination
with a variety of techniques employed [41]. A key
difficulty is that the natural language processing of
the question derives a formula of far greater complex-
ity than the human derived equivalent. This process
derives a large bank of examples of CAD problems,
as discussed in [45] for example. The authors of [45]
told us there are plans to make this data set public.

V. CONCLUSIONS AND QUESTIONS

After surveying the work in Section III we see that several
approaches to the creation of heuristics have been taken:
ranging from human identified algebraic features, justified by
mathematical arguments and observations to different extents;
to machine learned choices using a support vector machine. We
are interested to hear how these compare with the heuristics
used in SAT-solvers and what lessons can be learned.

We can identify at least two areas where CAD is in need
of further heuristic development.

• How best to take decisions in tandem: The work
surveyed all considered choices to be made for CAD
in isolation (assuming other choices had already been
fixed). Of course, in reality this may not be the case.
We must decide which decisions to prioritise; how
heuristics can be combined; and how the combinatorial
blow-up of decisions can be contained. Does the SAT-
solving community have experience in similar issues?

There are many implementations of CAD including: the dedi-
cated command line program Qepcad [12]; Mathematica [58],
[59], where CAD is not available directly but is used as
a subroutine for quantifier elimination; the Redlog pack-
age for REDUCE [57]; and 3 different MAPLE libraries -
the RegularChains Library (see Section III-C; SyNRAC
[67] (now part of the Todai Robot project) and our own
ProjectionCAD module [32].

• How to choose between different implementations?
Each implementation includes unique pieces of theory
and features and excels on different examples. Ide-
ally, we would have a single implementation which
encompasses all recent advances. A more manageable
step may be an overarching MAPLE command to
choose between the 3 packages there. SMT-solvers
are designed to use a variety of different theory solvers
and how they choose between these may offer valuable
lessons here.

Surveying Section IV raises a number of questions about
how benchmark sets should be produced:

8http://21robot.org



• How best to generate large numbers of examples
which are not internally uniform?

• How important is it that the benchmarks come from
current applications?

• How important is it that the benchmarks have histor-
ically been used in the literature?

• Are randomly generated examples a fairer way to
evaluate the software, or irrelevant as too far removed
from applications?

The SAT / SMT community posses a unified, large and
growing set of benchmarks in the SMT-LIB library and so we
may be able to extrapolate lessons from this. However, as noted
above, this library may be too uniform [38], and comments
from the anonymous referees suggest that this and other critics
are already a topic of discussion in the SMT community.

Acknowledgements

Thanks to our collaborators on the work surveyed here:
Russell Bradford, James Bridge, Changbo Chen, Zongyan
Huang, Scott McCallum, Marc Moreno Maza, Lawrence Paul-
son, and David Wilson. Thanks also to the anonymous referees
for their comments which improved the paper.

Most of the work surveyed here was supported by EPSRC
grant EP/J003247/1. The authors are now supported by EU
H2020-FETOPEN-2016-2017-CSA project SC2 (712689).

REFERENCES

[1] E. Ábráham. Building bridges between symbolic computation and
satisfiability checking. In Proceedings of the 2015 International
Symposium on Symbolic and Algebraic Computation, ISSAC ’15, pages
1–6. ACM, 2015.

[2] E. Ábrahám, J. Abbott, B. Becker, A.M. Bigatti, M. Brain, B. Buch-
berger, A. Cimatti, J.H. Davenport, M. England, P. Fontaine, S. Forrest,
A. Griggio, D. Kroening, W.M. Seiler, and T. Sturm. SC2: Satisfiability
checking meets symbolic computation. In M. Kohlhase, M. Johansson,
B. Miller, L. de Moura, and F. Tompa, editors, Intelligent Computer
Mathematics: Proceedings CICM 2016, LNCS 9791, pages 28–43.
Springer International Publishing, 2016.

[3] B. Akbarpour and L.C. Paulson. MetiTarski: An automatic theorem
prover for real-valued special functions. Journal of Automated Reason-
ing, 44(3):175–205, 2010.

[4] D. Arnon, G.E. Collins, and S. McCallum. Cylindrical algebraic
decomposition I: The basic algorithm. SIAM Journal of Computing,
13:865–877, 1984.

[5] D.S. Arnon. A cluster-based cylindrical algebraic decomposition
algorithm. Journal of Symbolic Computation, 5(1-2):189–212, 1988.

[6] R. Bradford, C. Chen, J.H. Davenport, M. England, M. Moreno Maza,
and D. Wilson. Truth table invariant cylindrical algebraic decomposition
by regular chains. In V.P. Gerdt, W. Koepf, W.M. Seiler, and E.V.
Vorozhtsov, editors, Computer Algebra in Scientific Computing, LNCS
8660, pages 44–58. Springer International Publishing, 2014.

[7] R. Bradford, J.H. Davenport, M. England, S. McCallum, and D. Wilson.
Cylindrical algebraic decompositions for boolean combinations. In
Proceedings of the 38th International Symposium on Symbolic and
Algebraic Computation, ISSAC ’13, pages 125–132. ACM, 2013.

[8] R. Bradford, J.H. Davenport, M. England, S. McCallum, and D. Wilson.
Truth table invariant cylindrical algebraic decomposition. Journal of
Symbolic Computation, 76:1–35, 2015.

[9] R. Bradford, J.H. Davenport, M. England, and D. Wilson. Optimising
problem formulations for cylindrical algebraic decomposition. In
J. Carette, D. Aspinall, C. Lange, P. Sojka, and W. Windsteiger, editors,
Intelligent Computer Mathematics, LNCS 7961, pages 19–34. Springer
Berlin Heidelberg, 2013.

[10] C.W. Brown. Improved projection for cylindrical algebraic decomposi-
tion. Journal of Symbolic Computation, 32(5):447–465, 2001.

[11] C.W. Brown. Simple CAD construction and its applications. Journal
of Symbolic Computation, 31(5):521–547, 2001.

[12] C.W. Brown. An overview of QEPCAD B: a tool for real quantifier
elimination and formula simplification. Journal of Japan Society for
Symbolic and Algebraic Computation, 10(1):13–22, 2003.

[13] C.W. Brown. Companion to the tutorial: Cylindrical algebraic decompo-
sition, presented at ISSAC ’04. http://www.usna.edu/Users/cs/wcbrown/
research/ISSAC04/handout.pdf, 2004.

[14] C.W. Brown. Constructing a single open cell in a cylindrical algebraic
decomposition. In Proceedings of the 38th International Symposium
on Symbolic and Algebraic Computation, ISSAC ’13, pages 133–140.
ACM, 2013.

[15] C.W. Brown and J.H. Davenport. The complexity of quantifier elimina-
tion and cylindrical algebraic decomposition. In Proceedings of the 2007
International Symposium on Symbolic and Algebraic Computation,
ISSAC ’07, pages 54–60. ACM, 2007.

[16] C.W. Brown, M. El Kahoui, D. Novotni, and A. Weber. Algorithmic
methods for investigating equilibria in epidemic modelling. Journal of
Symbolic Computation, 41:1157–1173, 2006.

[17] B. Buchberger. Bruno Buchberger’s PhD thesis (1965): An algorithm for
finding the basis elements of the residue class ring of a zero dimensional
polynomial ideal. Journal of Symbolic Computation, 41(3-4):475–511,
2006.

[18] B. Buchberger and H. Hong. Speeding up quantifier elimination
by Gröbner bases. Technical report, 91-06. RISC, Johannes Kepler
University, 1991.

[19] C. Chen and M. Moreno Maza. Cylindrical algebraic decomposition
in the RegularChains library. In H. Hong and C. Yap, editors,
Mathematical Software – ICMS 2014, LNCS 8592, pages 425–433.
Springer Heidelberg, 2014.

[20] C. Chen and M. Moreno Maza. An incremental algorithm for computing
cylindrical algebraic decompositions. In R. Feng, W. Lee, and Y. Sato,
editors, Computer Mathematics, pages 199—221. Springer Berlin Hei-
delberg, 2014.

[21] C. Chen, M. Moreno Maza, B. Xia, and L. Yang. Computing cylindrical
algebraic decomposition via triangular decomposition. In Proceedings
of the 2009 International Symposium on Symbolic and Algebraic
Computation, ISSAC ’09, pages 95–102. ACM, 2009.

[22] G.E. Collins and H. Hong. Partial cylindrical algebraic decomposition
for quantifier elimination. Journal of Symbolic Computation, 12:299–
328, 1991.

[23] J.H. Davenport. A “Piano-Movers” Problem. SIGSAM Bull., 20(1-
2):15–17, 1986.

[24] J.H. Davenport, R. Bradford, M. England, and D. Wilson. Program
verification in the presence of complex numbers, functions with branch
cuts etc. In 14th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing, SYNASC ’12, pages 83–88. IEEE,
2012.

[25] J.H. Davenport and M. England. Need polynomial systems be doubly
exponential? In G.-M. Greuel, T. Koch, P. Paule, and A. Sommese,
editors, Mathematical Software – Proceedings of ICMS 2016, LNCS
9725, pages 157–164. Springer International Publishing, 2016.

[26] J.H. Davenport and J. Heintz. Real quantifier elimination is doubly
exponential. Journal of Symbolic Computation, 5(1-2):29–35, 1988.

[27] A. Dolzmann, A. Seidl, and T. Sturm. Efficient projection orders for
CAD. In Proceedings of the 2004 International Symposium on Symbolic
and Algebraic Computation, ISSAC ’04, pages 111–118. ACM, 2004.

[28] M. England, R. Bradford, C. Chen, J.H. Davenport, M. Moreno Maza,
and D. Wilson. Problem formulation for truth-table invariant cylindrical
algebraic decomposition by incremental triangular decomposition. In
S.M. Watt, J.H. Davenport, A.P. Sexton, P. Sojka, and J. Urban, editors,
Intelligent Computer Mathematics, LNCS 8543, pages 45–60. Springer
International, 2014.

[29] M. England, R. Bradford, and J.H. Davenport. Improving the use
of equational constraints in cylindrical algebraic decomposition. In
Proceedings of the 2015 International Symposium on Symbolic and
Algebraic Computation, ISSAC ’15, pages 165–172. ACM, 2015.



[30] M. England, R. Bradford, J.H. Davenport, and D. Wilson. Choosing
a variable ordering for truth-table invariant cylindrical algebraic de-
composition by incremental triangular decomposition. In H. Hong and
C. Yap, editors, Mathematical Software – ICMS 2014, LNCS 8592,
pages 450–457. Springer Heidelberg, 2014.

[31] M. England and J.H. Davenport. The complexity of cylindrical algebraic
decomposition with respect to polynomial degree. To appear In:
Proceedings CASC 2016 (Springer LNCS), 2016.

[32] M. England, D. Wilson, R. Bradford, and J.H. Davenport. Using the
Regular Chains Library to build cylindrical algebraic decompositions
by projecting and lifting. In H. Hong and C. Yap, editors, Mathe-
matical Software – ICMS 2014, LNCS 8592, pages 458–465. Springer
Heidelberg, 2014.

[33] M. Erascu and H. Hong. Synthesis of optimal numerical algorithms
using real quantifier elimination (Case Study: Square root computation).
In Proceedings of the 39th International Symposium on Symbolic and
Algebraic Computation, ISSAC ’14, pages 162–169. ACM, 2014.

[34] I.A. Fotiou, P.A. Parrilo, and M. Morari. Nonlinear parametric opti-
mization using cylindrical algebraic decomposition. In Decision and
Control, 2005 European Control Conference. CDC-ECC ’05., pages
3735–3740, 2005.

[35] H.G. Graebe, A. Nareike, and S. Johanning. The SymbolicData
project: Towards a computer algebra social network. In M. England,
J.H. Davenport, A. Kohlhase, M. Kohlhase, P. Libbrecht, W. Neuper,
P. Quaresma, A.P. Sexton, P. Sojka, J. Urban, and S.M. Watt, editors,
Joint Proceedings of the MathUI, OpenMath and ThEdu Workshops and
Work in Progress track at CICM, number 1186 in CEUR Workshop
Proceedings, 2014.

[36] A. Heinle and V. Levandovskyy. The SDEval benchmarking toolkit.
ACM Communications in Computer Algebra, 49(1):1–9, 2015.

[37] H. Hong. Comparison of several decision algorithms for the existential
theory of the reals. Technical report, RISC, Linz, 1991.

[38] Z. Huang, M. England, J.H. Davenport, and L. Paulson. Using machine
learning to decide when to precondition cylindrical algebraic decom-
position with Groebner bases. In 18th International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing, SYNASC
’16. Preprint: Arxiv 1608.04219. IEEE, 2016.

[39] Z. Huang, M. England, D. Wilson, J.H. Davenport, and L. Paulson. A
comparison of three heuristics to choose the variable ordering for cad.
ACM Communications in Computer Algebra, 48(3):121–123, 2014.

[40] Z. Huang, M. England, D. Wilson, J.H. Davenport, L. Paulson, and
J. Bridge. Applying machine learning to the problem of choosing
a heuristic to select the variable ordering for cylindrical algebraic
decomposition. In S.M. Watt, J.H. Davenport, A.P. Sexton, P. Sojka,
and J. Urban, editors, Intelligent Computer Mathematics, LNAI 8543,
pages 92–107. Springer International, 2014.

[41] H. Iwane, T. Matsuzaki, N.H. Arai, and H. Anai. Automated natural
language geometry math problem solving by real quantifier elimination.
In Proceedings of the 10th International Workshop on Automated
Deduction in Geometry, ADG ’14, pages 75–84, 2014.

[42] H. Iwane, H. Yanami, H. Anai, and K. Yokoyama. An effective imple-
mentation of a symbolic-numeric cylindrical algebraic decomposition
for quantifier elimination. In Proceedings of the 2009 conference on
Symbolic Numeric Computation, SNC ’09, pages 55–64, 2009.

[43] D. Jovanovic and L. de Moura. Solving non-linear arithmetic. In
B. Gramlich, D. Miller, and U. Sattler, editors, Automated Reasoning:
6th International Joint Conference (IJCAR), LNCS 7364, pages 339–
354. Springer, 2012.

[44] W. Kahan. Branch cuts for complex elementary functions. In A. Iserles
and M.J.D. Powell, editors, Proceedings The State of Art in Numerical
Analysis, pages 165–211. Clarendon Press, 1987.

[45] M. Kobayashi, H. Iwane, T. Matsuzaki, and H. Anai. Efficient subfor-
mula orders for real quantifier elimination of non-prenex formulas. In
S.I. Kotsireas, M.S. Rump, and K.C. Yap, editors, Mathematical Aspects
of Computer and Information Sciences (MACIS ’15), LNCS 9582, pages
236–251. Springer International Publishing, 2016.

[46] T. Matsuzaki, H. Iwane, H. Anai, and N. Arai. The most uncreative
examinee: A first step toward wide coverage natural language math
problem solving. In C.E. Brodley and P. Stone, editors, Proceedings of
28th Conference on Artificial Intelligence, AAAI ’14, pages 1098–1104.
AAAI Press, 2014.

[47] B.W. Matthews. Comparison of the predicted and observed secondary
structure of T4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-
Protein Structure, 405(2):442–451, 1975.

[48] E.W. Mayr and A.R. Meyer. The complexity of the word problems
for commutative semigroups and polynomial ideals. Advances in
Mathematics, 46(3):305–329, 1982.

[49] S. McCallum. An improved projection operation for cylindrical alge-
braic decomposition of three-dimensional space. Journal of Symbolic
Computation, 5(1-2):141–161, 1988.

[50] S. McCallum. An improved projection operation for cylindrical
algebraic decomposition. In B. Caviness and J. Johnson, editors,
Quantifier Elimination and Cylindrical Algebraic Decomposition, Texts
& Monographs in Symbolic Computation, pages 242–268. Springer-
Verlag, 1998.

[51] S. McCallum. On projection in CAD-based quantifier elimination
with equational constraint. In Proceedings of the 1999 International
Symposium on Symbolic and Algebraic Computation, ISSAC ’99, pages
145–149. ACM, 1999.

[52] S. McCallum. On propagation of equational constraints in CAD-
based quantifier elimination. In Proceedings of the 2001 International
Symposium on Symbolic and Algebraic Computation, ISSAC ’01, pages
223–231. ACM, 2001.

[53] S. McCallum, A. Parusińiski, and L. Paunescu. Validity proof of
Lazard’s method for CAD construction. Preprint: Arxiv 1607:00264,
2016.

[54] L.C. Paulson. Metitarski: Past and future. In L. Beringer and
A. Felty, editors, Interactive Theorem Proving, LNCS 7406, pages 1–10.
Springer, 2012.

[55] A. Platzer, J.D. Quesel, and P. Rümmer. Real world verification. In
R.A. Schmidt, editor, Automated Deduction (CADE-22), LNCS 5663,
pages 485–501. Springer Berlin Heidelberg, 2009.

[56] B. Schölkopf, K. Tsuda, and J.-P. Vert. Kernel methods in computational
biology. MIT Press, 2004.

[57] A. Seidl and T. Sturm. A generic projection operator for partial cylindri-
cal algebraic decomposition. In Proceedings of the 2003 International
Symposium on Symbolic and Algebraic Computation, ISSAC ’03, pages
240–247. ACM, 2003.

[58] A. Strzeboński. Cylindrical algebraic decomposition using validated
numerics. Journal of Symbolic Computation, 41(9):1021–1038, 2006.

[59] A. Strzeboński. Computation with semialgebraic sets represented by
cylindrical algebraic formulas. In Proceedings of the 2010 International
Symposium on Symbolic and Algebraic Computation, ISSAC ’10, pages
61–68. ACM, 2010.

[60] A. Strzeboński. Cylindrical algebraic decomposition using local projec-
tions. In Proceedings of the 39th International Symposium on Symbolic
and Algebraic Computation, ISSAC ’14, pages 389–396. ACM, 2014.

[61] D. Wilson. Real geometry and connectedness via triangular description:
Cad example bank, 2013.

[62] D. Wilson, R. Bradford, J.H. Davenport, and M. England. Cylindrical
algebraic sub-decompositions. Mathematics in Computer Science,
8:263–288, 2014.

[63] D. Wilson, J.H. Davenport, M. England, and R. Bradford. A “piano
movers” problem reformulated. In 15th International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing, SYNASC
’13, pages 53–60. IEEE, 2013.

[64] D. Wilson, M. England, J.H. Davenport, and R. Bradford. Using the dis-
tribution of cells by dimension in a cylindrical algebraic decomposition.
In 16th International Symposium on Symbolic and Numeric Algorithms
for Scientific Computing, SYNASC ’14, pages 53–60. IEEE, 2014.

[65] D.J. Wilson, R.J. Bradford, and J.H. Davenport. A repository for CAD
examples. ACM Communications in Computer Algebra, 46(3):67–69,
2012.

[66] D.J. Wilson, R.J. Bradford, and J.H. Davenport. Speeding up cylindrical
algebraic decomposition by Gröbner bases. In J. Jeuring, J.A. Campbell,
J. Carette, G. Reis, P. Sojka, M. Wenzel, and V. Sorge, editors, Intel-
ligent Computer Mathematics, LNCS 7362, pages 280–294. Springer,
2012.

[67] H. Yanami and H. Anai. Development of SyNRAC. In Proceedings
of the 6th international conference on Computational Science: Part II.
(LNCS vol 3992), ICCS ’06, pages 462–469, 2006.


