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Abstract—One of the main application areas and driving
forces behind the development of Satisfiability Modulo Theory
(SMT) solvers is software verification. The requirements of
software verification are somewhat different to other applications
of automated reasoning, posing a number of challenges but
also providing some interesting opportunities. This paper brings
together and summarises the algebras and structures of interest,
along with some of the problems that are characteristic of
software verification. It is hoped that this will allow computer
algebra researchers to assess the applicability of their techniques
to this challenging, but rewarding domain.

Software verification is the prototypical application domain
for Satisfiability Modulo Theory (SMT) solvers. There are
many aspects of the two research fields that show a signif-
icant degree of co-evolution. For example, the central role
of theories (and the theories that are available – for example
bit-vectors and arrays) can be seen as a formalisation of the
domain specific decision procedures that were used in early
verification systems [1]. Universal quantification is challenging
for most SMT solver algorithms, leading to poor performance
and thus many software verification systems avoid generating
quantifiers. Likewise the importance of model generation1 is
in part driven but the utility of these models for providing
execution or error traces in verification systems. The co-
evolution can also be seen in the SMT-LIB benchmarks which
feature many benchmark collections generated by verification
tools.

This paper aims to highlight some of the requirements and
‘evolutionary pressures’ that software verification places on
SMT solver development. It is hoped that this context will
help computer algebra researchers to identify, develop and
refine algorithms so that they can demonstrate impact on
commercial-scale software verification problems. The topics
raised are a mix between challenges that have to be overcome
and opportunities in under-explored / critical areas.

I. FORMULA SHAPE

Challenge: Tolerate irrelevant formulae. The formulae gen-
erated by verification tools tend to be very different from those
generated by human modelling of problems. One of the real
challenges of mathematical modelling is reducing the problem
to a minimal core which captures the key challenge. This is a
process which requires considerable intuition and experience

1Generating a model or witness is often regard as part of a satisfiability
check, particularly for Boolean satisfiability but is not formally required.

and it is not clear whether automating it is even possible. Con-
sequentally, compared to directly human generated formulae,
the formulae generated by verification tools are much larger
and contain a significant amount of ‘simple’ and ‘irrelevant’
parts.

Opportunity: Exploit disequalities and if-then-else. Software
verification problems tend to produce formulae with some
Boolean structure, particularly from the use of if-then-else
expression to model different paths of execution. One of the
advantages of the DPLL(T)[2] algorithm is that theory solvers
do not need to handle the Boolean structure of the formula.
The SAT solver will provide a partial assignment to the
theory literals and the theory solver must determine if they are
consistent. Unlike traditional algebra problems, this includes
equalities that are assigned to false and if-then-else operations.
Exploiting this additional information is likely to improve
performance but may require (or enable) new approaches to
some problems.

Challenge: Handle inequalities. Another feature common in
software verification problems that is not classically algebraic
is the use of inequalities. Although there are some applica-
tions, such as equivalence checking, that are possible without
inequalities, the frequency of ordering comparisons in most
real software means these are a critical requirement.

II. ALGEBRAS AND STRUCTURES OF INTEREST

As well as having formula structure unlike conventional,
human generated algebraic problems, software verification
problems also tend to use unconventional algebras and rela-
tional structures. A minority of software verification systems
use integers2 and reals to model variables, particularly those
focused on algorithm rather than program verification. How-
ever this approach seems to becoming less common as these
do not capture the full behaviour of real systems (overflow,
rounding, etc.) and also increase the complexity of the decision
procedure.

A. Bit-Vectors

Core to the performance of SMT solvers on software
verification problems is their handling of the theory of fixed
width bit-vector[3]. Variables in this theory are interpreted as
bit-vectors of a given size, operations are a mix of (modular)

2Sometimes referred to as “mathematical integers” to distinguish them from
the integer types in programming languages.



arithmetic (plus, multiply, divide, etc.), logical operations (and,
xor, shift, etc.) and structural (extract, concatinate, etc.) with
predicates for signed and unsigned comparisons. Although
there have been some interesting alternatives proposed[4], [5],
most solvers still use “bit-blasting”; converting the expressions
to a Boolean circuit and using a SAT solver. Optimal circuits
are known for some operations[6] but others such as mul-
tiplication, division and variable shifts introduce additional
difficulty which can, in some cases, cause the solver to
time-out for even “simple” queries. Given this fundamental
limitation of current solvers and the significance of bit-vectors
to application performance, better handling of these formula
would be of major benefit.

Opportunity: Sub-algebras. The range of operations in the
theory of bit-vectors makes it hard to find decision procedures
that work well for arbitrary formulae. However for many
applications, groups of variables will only ever use a handful
of operations. For example, variables used as counters will
only assign constants, increment and check against bounds,
variables that are used as bitmaps are rarely used in multi-
plications and the bitwise operations form a Boolean algebra,
many modern cryptographic algorithms only use add, roll and
xor (ARX) and floating-point operations make heavy use of a
max-plus algebra with signed comparison. Thus finding useful
sub-signatures of the theory of bit-vectors, identifying their
algebraic structure and then building decision procedures that
exploit this structure seems like a promising research direction.

B. Floating-Point

Many software verification applications concern control
systems which must use sensor data to control a real-world
system (aircraft, train, industrial robots, UAVs, autonomous
cars, “cyber-physical systems”, etc.). Pure integer and fixed-
point control systems are becoming a rarity with most control
systems using floating-point. Thus there is a significant com-
mercial drive for verification systems to handle floating-point
numbers efficiently and effectively.

The so-called “standard model” converts floating-point ex-
pressions to real expressions. For example, if f and g are
floating-point variables and ⊕r denotes floating-point addition
with rounding mode r:

f⊕r g ; (f + g)(1 + δ) |δ| 6 ε

where ε is a small, format dependent constant. Although
this model is simple, it has a number of limitations. An
extensive set of side condition are required to correctly model
actual hardware (no overflows, no subnormal numbers, etc.)
and often these are the precise conditions we are trying to
identify. If these are used then the standard model is an over-
approximation of the behaviour of hardware, meaning that
spurious SAT results can be given. Worse from an application
point of view is that it is difficult to generate the bit-exact
traces needed to assess, diagnose and fix real systems.

As a consequence, a theory of floating-point numbers[7]
has been developed and added to the SMT-LIB standard. Its
formalisation makes use of sets Fe,s of floating-point numbers

with e exponent and s significand bits, plus R∗ an extension
of R with infinities and not-a-number. A family of order-
preserving functions vFe,s

: Fe,s → R∗ give the real value of
a floating-point number and round picks between the adjoints
of v and applies one, to map back into Fe,s, thus:

f⊕r g ; round(r, v(f) + v(g)).

This approach allows bit-exact specification of floating-point
numbers with a minimal number of edge-cases and a maximal
amount of algebraic structure.

Opportunity: Algebraic techniques on R∗. vFe,s
has rela-

tively little algebraic structure – floating-point addition and
multiplication are famously non-associative. As not-a-number
is absorbing for all operations, R∗ is not a field but it is
an additive and multiplicative commutative monoid with the
associativity property [8] and so semi-ring decision procedures
may be applicable.

Opportunity: Mixed real and float. If v and round can be
handled then this may not only be able to handle floating-point
problems but also mixed float and real problems which are of
considerable commercial interest.

C. Differential Theories

Another interest driven by control systems is that of rea-
soning about differential equations. Most control systems are
developed with respect to a model of the environment with
which they are interacting. This is normally formalised as a
system of differential equations. However due to limitations
of the solver technology this is not directly used in the
verification, instead a computational model is built. If solvers
could handle differential equations of some form, it could
significantly increase the ability of tools to verify these cyber-
physical systems.

Opportunity: Symbolic algorithms for differential systems.
dReal [9] has made some impressive progress using numerical
methods for handling differential equations. Using symbolic
algorithms has yet to be explored but may have great potential.

III. BEYOND SATISFIABILITY

Determining formula satisfiability is the core role of SMT
solvers. However there are a number of similar and related
symbolic reasoning tasks, both inside and outside the solver,
that have significant practical impact and present interesting
opportunities for applying algebraic techniques.

A. Expression Simplification

Expression simplification is a vital component in most
SMT solvers and program verification systems. It is used for
performing constant folding ((x + 1) + 1 ; x + 2),
simplifications (x <= x ; true) and normalisation
(!(x >= y) ; x < y). Although the rewriting steps are
generally simple, their effects can be drastic. For example,
given unsigned integers x, y and z of more than 16 bit:

assert((x * y) * z == x * (y * z));

will cause most bit-vector decision procedures to time out but
can be trivially resolved by a distributivity aware simplifier.



Opportunity: Improved simplification For such a key com-
ponent of solvers, there is relatively little in the conventional
published literature. There are papers that mention the number
of simplification rules used [10] or discuss their importance
to particular applications [11]. However there seems to be
little discussion of whether these sets are complete, whether
the popular architecture (stateless / context-free rewrites im-
plemented as ad-hoc tree-walks) is best, whether they could
or should be used during the solve process rather than just
before. Given the similarity to rule-based differentiation and
integration algorithms, there might be techniques, best prac-
tices and ideas from the computer algebra community that
could revolutionise the role of expression simplification in
SMT solver.

B. Fixed-Points and Approximation

Current algorithms and verification systems are often built
“on top of” SMT solvers. The solver (or solvers) are the lowest
level component in the algorithm and satisfiability queries are
used as a way of checking inclusion or intersection between
sets (represented symbolically, using equations). This architec-
ture has proven flexible and effective. However if the reasoning
system can perform more than just satisfiability queries it can
be used at a higher level within verification algorithms. This
section presents verification algorithms ‘from the top down’,
highlighting the other kinds of symbolic reasoning task that
arise.

1) The Verification Question: We present a simple model
of software verification using the transition systems view.
This is perhaps idiomatic of the model checking community,
especially hardware model checking but it nicely illustrates
some of the key challenges.

Let x be a set of variables and v a set of values. A map
s : x → v that assigns value to variables is referred to as a
state (in the context of transition systems) or a valuation (in
the context of logical formulae). Let statesx,v denote x→ v,
the space of all such maps. Critical to symbolic verification
is the idea that we can use a formula (over x) to represent a
set of states. To make the distinction between sets represented
by formulae and sets described by other means, we will use
JF (x)K to denote the set of all valuations (states) that satisfy
formula F (x).

A symbolic representation of a transition system requires a
formula for the initial states, I(x) and a formula that describes
the transition relation between sets T (x, x′). As our interest
will be in the sets of states which are reachable from a given
set of states, we define forwards and backwards reachability
steps:

FRStep : 2statesx,v → 2statesx,v

FRStep(S) = S ∪ {t ∈ 2statesx,v |T (s, t) ∧ s ∈ S}
BRStep : 2statesx,v → 2statesx,v

BRStep(S) = S ∪ {t ∈ 2statesx,v |T (t, s) ∧ s ∈ S}

Both of these are monotonic and increasing on 2statesx,v , a
complete lattice, so by the Knaster-Tarski theorem they have

fixed-points which form a complete lattice [12]. We use lfp
to denote the least fixed-point of a function and define LFP
to give the least fixed-point above a given set (S):

LFP :Mono(2statesx,v → 2statesx,v )× 2statesx,v → 2statesx,v

LFP (f)(S) = lfp(λX.f(X ∪ S))

For simplicity we will consider safety properties; those
which are false if there is an execution trace from an initial
state to an unsafe state. P (x) is a formula describing the set
of safe states and thus:

FReach = LFP (FRStep, JI(x)K)
BReach = LFP (BRStep, J¬P (x)K)

system safe ⇔ FReach ⊆ JP (x)K
system safe ⇔ BReach ∩ JI(x)K = ∅

If a formula describing FReach or BReach can be found,
then showing system safety reduces to a single satisfiability
check. However there are no guarantees that the fixed-point
can be described by a formulae and even when they can,
there are few algorithms that can compute them. For example,
consider the following two loops, with variables in N, one
has a simple, computable fix-point, the other remains an open
question:

while (i < n) {
a[i] = n;

}

while (i != 1) {
if (i % 2 == 0) i = i/2;
else i = 3*1 + 1;

}

Opportunity: Finding exact fixed-points. There are many
interesting questions related to exact descriptions of fixed-
points; both theoretical (When does an expression over lan-
guage L have a fixed-point representable in L’? Is finding it
computable?) and practical (What are algorithms to compute
them? Are there subsets of expressions for which fixed-point
formula can be easily found?).

2) Approximate Approachs to Verification: When faced
with a intractable or computationally expensive problem, a
common approach in software verification is to approximate.
If:

FReach ⊂ O ∧O ⊆ JP (x)K ⇒ system safe

U ⊆ FReach ∧ ¬(U ⊆ JP (x)K ⇒ ¬system safe

Thus we have reduced the problem from computing fixed-
points to finding (formulae that describe) sets of states that
approximate the fix-points. From the definition of FReach
we have necessary and sufficient conditions for over and under
approximations:



LFP (FRStepo, Inito) ⊆ O
JI(x)K ⊆ Inito ∧ FRStep 6 FRStepo (1)

U ⊆ LFP (FRStepu, Initu)
Initu ⊆ JI(x)K ∧ FRStepu 6 FRStep (2)

Different approaches to verification can be seen as different
ways of finding solutions to equations (1) or (2). Some of
these are known as property directed and make of P (x) so
they produce an approximation that allows the safety of the
system to be determined. For example, the Hoare logic system
uses inductive invariants; formula Inv(x) such that:

I(x)⇒ Inv(x) Inv(x) ∧ T (x, x′) =⇒ Inv(x′).

This is a sufficient condition for (1) and has the advantage that
it is stated purely in terms of formulae, reducing the problem to
existential second-order logic. Bounded model checking aims
using a sequence of solutions of (2), first I(x), then

I(x) ∨ (I(x∗) ∧ T (x∗, x)),

next

I(x)∨ (I(x∗)∧T (x∗, x))∨ (I(x∗∗)∧T (x∗∗, x∗)∧T (x∗, x)),

and so on. These do not have fixed-points or second-order
variables and thus can be solved with simple satisfiability
calls. Abstract interpretation can be seen as picking FRStepo
(abstract transformer) and Inito (initial abstract state) in
such a way that LFP (FRStepo, Inito) is computable in the
abstract domain.

Opportunity: Finding fixed-point approximations. As with
computing exact fixed-points, there are both theoretical and
practical challenges. Finding new sufficient solutions to (1)
and (2), especially those without fixed-points or, ideally,
second-order quantification would likely yield new algorithms.
A classification theorem of what solutions exist or necessary
conditions would also be of great interest. Practically, algo-
rithms that compute over or under approximations, either using
one of the sufficient conditions (such as finding invariants) or
directly (as abstract interpretation does) are of great interest.

3) Pre-Image, Post-Image and Merging: One approach to
computing solutions to (1) and (2) is to perform stepwise
approximations. This requires approximating the pre or post
image of the transition relation and being able to merge two
or more approximations. Pre and post image approximations
can be described as finding the strongest (setwise smallest)
O(x) or the weakest (setwise largest) U(x) that satisfies the
appropriate formulae (given either Pre or Post):
• Forwards Over : Pre(x) ∧ T (x, x′)⇒ O(x′)
• Forwards Under : U(x′)⇒ Pre(x) ∧ T (x, x′)
• Backwards Over : Post(x′) ∧ T (x, x′)⇒ O(x)
• Backwards Under : U(x)⇒ Post(x′) ∧ T (x, x′)

Although these involve second-order quantification (we are
searching for formula), they do not involve fixed-points and
are significantly more practical.

Merging of approximations is needed when multiple control
flow paths converge, for example after an if statement or after
a loop. It is sufficient to take the disjunction of the two formula
but this tends to lead to unacceptable growth in formula size.
Thus it is useful to be able to find the smallest O(x) or largest
U(x) such that:

O1(x) ∨O2(x)⇒ O(x) U(x)⇒ U1(x) ∨ U2(x)

Opportunity: Step-wise Approximations. Computing abstract
pre and post-images can clearly be seen in algebraic terms.
Quantifier elimination, either via CAD [13] or virtual term
substitution [14], can give exact results for these, is it possible
to modify them to give faster under or over approximate
answers? Computing a convex hull (or the dual, ‘convex
interior’) is a way of merging, as is formula simplification.
Out of all of the opportunities high-lighted this seems to be
the one the is most directly accessible and closest to existing
work in computer algebra.

4) Reducing Second-Order Quantification: The preceding
sections have reduced computing system correctness to finding
formulae with the required properties; effectively solving exis-
tential second-order logic. Templates are a commonly used (for
example [15]) technique to reduce second-order quantification
to first-order quantification. For example, using a template of
l 6 x ∧ x 6 u, computing a (property directed) invariant can
be reduced to finding (vectors of) constants l and K such that:

I(x) ⇒ l 6 x ∧ x 6 u

l 6 x ∧ x 6 u ∧ T (x, x′) ⇒ l 6 x′ ∧ x′ 6 u

l 6 x ∧ x 6 u ⇒ P (x)

which requires a solver that can handle quantification alter-
nation but is purely first-order logic. In abstract interpretation
terms the template can be seen as characterising an abstract
domain [15]; the one given in the example is an interval
abstraction.

Opportunity: Template algorithms. Algorithms for working
with specific templates are of great utility as evidenced by the
range of abstract domains that are currently in use. Algorithms
that can work with arbitrary templates or templates that
are monotonic with respect to the constants have received
some initial investigation but there are likely to be significant
theoretical and practical gains to be made. Efficient implemen-
tations of such algorithms allow user specified templates but
also allow templates to be chosen automatically, effectively
refining the abstraction.

IV. CONCLUSION

Modern software verification techniques are heavily depen-
dent on efficient SMT solvers. Correspondingly SMT solver
development is often motivated, inspired and justified by
software verification applications. It is hoped that this paper
acts as a guide for computer algebra researchers to understand
this synergy, and appreciate some of the places algebraic
approaches could be fruitfully deployed and to get involved!
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