
Benchmarking Solvers, SAT-style

Martin Nyx Brain1, James H. Davenport2, and Alberto Griggio3

1 University of Oxford, Oxford, U.K.
2 University of Bath, Bath, U.K.

3 Fondazione Bruno Kessler, Trento, Italy

Abstract

The SAT community, and hence the SMT community, have substantial experience in bench-
marking solvers against each other on large sample sets, and publishing summaries, whereas
the computer algebra community tends to time solvers on a small set of problems, and pub-
lishing individual times.

This paper aims to document the SAT community practice for the benefit of the com-
puter algebra community.

Implicitly underlying benchmarking for solvers is the following hypothesis.

Hypothesis 1. Our solvers will be faced in practice (read “the next competition”) with problems
whose time-to-solve distribution is the same as that for the benchmark set.

A necessary condition is that one has a large benchmark set, ideally in the thousands.
Sampling appropriately is always a question of judgement.

Figure 1: A Survival Plot

 0

 500

 1000

 1500

 2000

 0.01 0.1 1 10 100 1000 10000

#
 o

f
in

s
ta

n
c
e
s

time

log-accumulated

base-newrw-strict-tan-msat
base-newrw-strict-tan-cvc4
base-newrw-strict-tan-yices

base-newrw-strict-tan-z3
base-newrw-strict-tan-best

Benchmarking Brain/Davenport/Griggio

1 “Cactus” or “Survival” plots

Figure 1 is a typical survival1 plot produced in the SMT community. The methodology for
producing these, given a large benchmark set of problems, is as follows.

1. For each method separately

(a) Solve each problem pi, noting the time ti (up to some threshold T).

(b) Sort the ti into increasing order (discarding the time-out ones).

(c) Plot the points (t1, 1), (t1 + t2, 2) etc., and in general (
∑k
i=1 ti, k).

2. Place all the plots on the same axes, optionally (as in Figure 1) using a logarithmic scale
for time.

N.B. There is therefore no guarantee that the same problems were used to produce time results
from different solvers.

From 1 we can deduce that, up to 100 seconds, the solvers are pretty similar, and with a time
budget of 100 seconds, can solve at most around 500 problems. At a time budget of 1000
seconds, the differences are more marked, and the worst solved around 1600 problems and the
best around 2000.

2 CDF plots

An alternative is (still after sorting the ti) to plot (t1, 1), (t2, 2) etc., and in general (tk, k). If
we normalise the y axis to [0, 1] (not discarding the timeouts) we have an approximation to the
cumulative distribution function. See [7] for some examples. Hence from these plots we can ask
questions like “what is the probability of solving a random problem in t seconds”.

3 Virtual Best Solver

Though not shown in Figure 1, the SAT competition has taken to including a ”virtual best
solver” (VBS) which is synthesised from the other results by taking the minimum (across all
solvers tested) time taken to solve every given benchmark. Thus the VBS time is always equal
to the time of some real solver, but which one will change by the benchmark (measuring how
often each solver is the VBS is also an interesting metric). The VBS can be added to the
survivor/cactus plot to get a feeling for the variability between solvers.

We have therefore added this to our solvers on the diagrams, and counted how often a solver
is the VBS. A variation on counting is provided by [4], who measure how often a solver is within
one second of being VBS. Their justification is “The constant of one second was chosen since we
consider a smaller difference as insignificant, especially in the context of 800 second time-out”.
This is open to the argument that it is just as subject to random fluctuation as the original,
but in a different place. One could consider scoring “VBS points”: 1 if VBS, 0 if more than 5%
slower2 than VBS, and linear interpolation in between.

1“Cactus” plots are the same with the axes flipped. Some cactus plots can be seen at http://fmv.jku.at/

hwmcc15/Biere-HWMCC15-talk.pdf.
2A percentage-based approach is probably more appropriate than a fixed time, as differences in time tend

to come from consistent features. But this could also do with more experimentation.

2

http://fmv.jku.at/hwmcc15/Biere-HWMCC15-talk.pdf
http://fmv.jku.at/hwmcc15/Biere-HWMCC15-talk.pdf

Benchmarking Brain/Davenport/Griggio

4 Running multiple copies

One of the effects of having a solution process whose running time is widely variable3 is that one
may well not be best served by just running the process to termination. In the case of a single
processor, this issue was considered by [5], who suggested (and indeed proved almost-optimality)
running the process up to certain time limits and then starting afresh, where the limits were of
the form T, T, 2T, T, T, 2T, 4T, T, T, 2T, T, T, 2T, 4T, 8T, . . ., where T is some arbitrary unit.

This is in fact the default behaviour in MiniSAT 2.2.0, where it is known as Luby (though
T is in fact measured in terms of conflicts rather than time, and it’s not a complete restart that
is performed, as certain learned clauses are kept).

These days, with processors getting more numerous rather than faster, we might consider
running multiple copies in parallel. To see how this might help, consider the trivial case of
a process whose running time is 1,K,K2 with equal probability. Then the average time to
solution is 1

3 (1+K+K2) = 37 when K = 10. Running two copies and aborting the other when
one finds the solution has an average time to solution of 1

9 (5 + 3K + K2) = 15 when K = 10,
so the CPU cost is 30 units, still less than the sequential cost. Similarly, three copies gives
1
27 (19 + 7K+K2) = 7 when K = 10, so the CPU cost is 21 units, even better. For K = 10, the
minimum is achieved at 8-fold parallelism, with time-to-solution 1.36 units, and a CPU cost of
10.9 units.

The break even point for two-fold parallel running is K = 1
2

(
1 +
√

37
)
≈ 4.5, and three-fold

running is K = 4. It is worth noting, though, that a single Luby process with T = 1
3 (to avoid

T = 1 getting lucky) achieves an average time to solution (and cost) of ≈ 9.

5 Distributions

5.1 Normal Distribution of Times

Figure 2: Data from Section 5.1 — Normal distribution

3These algorithms are widely called Las Vegas algorithms. However, the term has different connotations in
the different fields. In Symbolic Computation, most Las Vegas algorithms are ones that normally produce the
answer in a deterministically-bounded time, but may occcasionally fail and have to try again, and effort goes
into bounding the error probability, and proving that the algorithm will terminate. Modular algorithms are a
classic example. But here we are considering algorithms whose running time is intrinsically variable.

3

Benchmarking Brain/Davenport/Griggio

It is far from clear what sort of distribution the running times of SAT, and even less
SMT, solvers have, but it would be foolish to ignore the normal distribution. We took 36
hypothetical cases, with 9 different running times t0 = 1, . . . , 9, and standard deviations
t0/10, 2t0/10, 3t0/10, 4t0/10 for each running time. The mean running times roughly mimic
the fact that a benchmark suite will have problems of a range of difficulties (indeed, we may
have underplayed the range). Some problems seem to be more variable than others,but we have
no real justification for the sane of standard deviations.

We used five (hypothetical) possible solvers. The base line one just took a time t at random
from the relevant normal distribution: t ∈ N(t0, kt0/10). The second one ran two copies in
parallel, terminating when the first one did, the third ran three copies, and the next two 10 and
20. In this case, the VBS is in fact the equivalent of running 36 copies. The data are in Figure
2. Note that we are not charging twice for the cost of running two copies, i.e. we are looking
at “time to solution” not “cost of solution”

Figure 3: Data from Section 5.1 — log Normal distribution

It is also not clear whether we should assume t or log t is normally distributed. Hence
we re-ran these experiments, but applied the normal distribution in log t-space. The standard
deviation was scaled so that it bore the same ratio to the mean as before, i.e. σlog = σ

µlog

µ ,
where µ and σ represent the mean and standard deviation. Again, the VBS is in fact the
equivalent of running 36 copies. The data are in Figure 3. We note that the left-hand figures
look almost identical, but the right-hand (semi-log plot) ones show a distinct difference at the
lower end.

5.2 Uniform Distribution of Times

We then considered uniform distributions, with the lower bounds being t0 = 1, . . . , 10, and the
upper bounds being 10 times that. We used the same hypothetical solvers as before. The data
are in Figure 4.

Again, one could say that we should be uniform in log(t), and we did these computations.
The data are in Figure 5. It might seem from these that running twice and running thrice were
very similar, and in fact that running twice was almost half the time of running once, thus
meaning that they were almost equivalent in cost. In fact, this model is susceptible to algebraic
treatment, and the formulae (running from 1 to B seconds, with numeric values for B = 10)

4

Benchmarking Brain/Davenport/Griggio

Figure 4: Data from Section 5.2 — Uniform distribution

Figure 5: Data from Section 5.2 — log Uniform distribution

are as follows:

once = B−1
logB ≈ 3.9087

twice = 2
(logB)2 (B − (logB + 1)) ≈ 2.5264

thrice = 6
(logB)3

(
B − (1

2 logB + logB + 1)
)
≈ 1.9887

Hence in fact the “running thrice” number is approximately correct, at one-half the elapsed
time of running once.

5

Benchmarking Brain/Davenport/Griggio

Figure 6: Data from Section 6.1

6

Benchmarking Brain/Davenport/Griggio

6 Case Studies

For the first three tests we used a vector of baseline times (notionally in seconds) of
cat(2,[1.1:0.002:2],[2:1:50],[50:5:300]); in MatLab speak, i.e. 1.1 to 2 in steps of
0.002, 2 to 50 in step of 1, and 50 to 300 in steps of 5.

6.1 Predictable

We first measure four solvers: baseline, baseline less 1 second, 40% of baseline and a hybrid
of 70% of (baseline less 0.5 seconds). The results are shown in Figure 6. “1 second shorter”
was quickest 284 times, and “60% faster” 267 times. However, “60% faster” took 48.3 seconds
longer than the Virtual Best (which took 4311 seconds),“1 second shorter” 6036 seconds longer,
hybrid 3125 seconds longer and the baseline 6572 seconds longer.

6.2 Predictable plus Fuzz

What happens if we multiply each time by a random variable, uniform in [0.8,1.2]? 40 runs of
this experiment give a mean VBS time of 4299 seconds, with a standard deviation of 53.455. In
the counts of how often each solver was VBS, hybrid appeared, showing up between 5 and 17
times, with corresponding adjustments to the others. “1 second shorter” was always the most
common, with the ratio of it over “60% faster” ranging from 1.09 to 1.34. The plots (linear and
semilogx) are in Figure 7.

6.3 Predictable plus Random

To the previous solvers, we add a “joker”, that, on one problem in 10, takes 10% as long as
the baseline. The results are shown in Figure 8. The joker was quickest 55 times, “1 second
shorter” was quickest 256 times, and “60% faster” 240 times. The time differences are that
“60% faster” took 402 seconds longer than the Virtual Best, “1 second shorter” 6390 seconds,
hybrid 3479 seconds, the joker 5865 seconds and the baseline 6941 seconds.

6.4 Judgement

The data used so far had 500 “fast” problems (< 2 seconds), 50 “medium” (between 2 and
50) and 5 hard (over 50). What happens if, instead, we have equal numbers in each bracket.
The results from this, otherwise using the same methodology as section 6.3, are in Figure 9:
the reader can see the difference from Figure 8: the current figure is dominated by the slow
problems. The joker was quickest 593 times, “1 second shorter” was quickest 256 times, and
“60% faster” 5084 times.

7 Pairwise comparisons

Scatter plots are used to compare pairs of solvers. For each benchmark you plot (sometimes
using different colours or marks for SAT and UNSAT) a point with x location the time taken
by solver 1 and y the time taken by solver 2. To make things easier to follow, people commonly
add the diagonal (sometimes annotated with ”solver 1 is faster” and ”solver 2 is faster” on the
relevant sides / corners) and the time-out lines. An example is shown in Figure 10, from which
one might reasonably conclude that Solver 1 is typically 10 times slower than Solver 2, and that

7

Benchmarking Brain/Davenport/Griggio

Figure 7: Data from Section 6.2

Solver 2 never timed out, whereas Solver 1 sometimes did. loglog plots are usually used, since
ratios are the usual deduction.

8

Benchmarking Brain/Davenport/Griggio

8 Conclusions

The SAT community has had substantial experience in measuring, and comparing, solvers whom
time is intrinsically variable, and where selective publication of results could be used to justify
almost every conclusion: for example selection from the data underpinning Figure 10 could
justify anything from “On UNSAT examples, Solver 1 is comparable to Solver 2”, to “Solver
2 is thousands of times faster than Solver 1”. If the computer algebra community is to move
from publication of a small set of results to more objective comparisons, it will need to develop:

• significant collections of curated4 problem sets, available in a common machine-readable
format5, as DIMACS [6] and SMT-LIB [2] have done for the SAT and SMT communities;

• the habit of publishing results based on such collections;

• the habit of publishing more than just averages, and this paper is an attempt to indicate
what has been found useful in the SAT/SMT communities.

References

[1] J.A. Abbott, A. Dı́az, and R.S. Sutor. OpenMath: A Protocol for the Exchange of Mathematical
Information. SIGSAM Bulletin 1, 30:21–24, 1996.

[2] C. Barrett, P. Fontaine, and C. Tinelli. The SMT-LIB Standard: Version 2.5. http://smtlib.cs.
uiowa.edu/papers/smt-lib-reference-v2.5-r2015-06-28.pdf, 2015.

[3] D. Bini and B. Mourrain. Polynomial test suite. http://www-sop.inria.fr/saga/POL/, 1996.

[4] M. Janota, I. Lynce, and J. Marques-Silva. Algorithms for computing backbones of propositional
formulae. AI Communications, 28:161–177, 2016.

[5] M. Luby, A. Sinclair, and D. Zuckerman. Optimal Speedup of Las Vegas algorithms. Information
Processing Letters, 47:173–180, 1993.

[6] I. Spence. Weakening Cardinality Constraints Creates Harder Satisfiability Benchmarks. J. Exp.
Algorithmics Article 1.4, 20, 2015.

[7] L. Xu, F. Hutter, H.H. Hoos, and K. Leyton-Brown. SATzilla: Portfolio-based Algorithm Selection
for SAT. Journal of Artificial Intelligence Research, 32:565–606, 2008.

4The POSSO test suite now seems to exist only in PDF form, at [3].
5This was one of the original goals of OpenMath [1].

9

http://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.5-r2015-06-28.pdf
http://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.5-r2015-06-28.pdf
http://www-sop.inria.fr/saga/POL/

Benchmarking Brain/Davenport/Griggio

Figure 8: Data from Section 6.3

10

Benchmarking Brain/Davenport/Griggio

Figure 9: Data from Section 6.4

11

Benchmarking Brain/Davenport/Griggio

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

S
ol

ve
r

2

Solver 1

unsatisfiable
satisfiable

Figure 10: Scatter Plot Example.

12

	``Cactus'' or ``Survival'' plots
	CDF plots
	Virtual Best Solver
	Running multiple copies
	Distributions
	Normal Distribution of Times
	Uniform Distribution of Times

	Case Studies
	Predictable
	Predictable plus Fuzz
	Predictable plus Random
	Judgement

	Pairwise comparisons
	Conclusions

