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Motivations-Cholesky’s LU decomposition

Cholesky’s LU decomposition:

1: for(i = 1; i <= n; i + +){
x = a[i][i];
for(k = 1; k < i ; k + +)

2: x = x − a[i][k] ∗ a[i][k];
3: p[i] = 1.0/sqrt(x);

for(j = i + 1; j <= n; j + +){
4: x = a[i][j];

for(k = 1; k < i ; k + +)
5: x = x − a[j][k] ∗ a[i][k];
6: a[j][i] = x ∗ p[i];

}
}

system 1:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 ≤ i ≤ n

i + 1 ≤ j ≤ n

1 ≤ k ≤ i − 1

1 ≤ i ′ ≤ n

i ′ + 1 ≤ j ′ ≤ n

j = j ′, k = i ′

i < i ′

system 2:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 ≤ i ≤ n

i + 1 ≤ j ≤ n

1 ≤ k ≤ i − 1

1 ≤ i ′ ≤ n

i ′ + 1 ≤ j ′ ≤ n

j = j ′, k = i ′

i = i ′, j < j ′

system 3:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 ≤ i ≤ n

i + 1 ≤ j ≤ n

1 ≤ k ≤ i − 1

1 ≤ i ′ ≤ n

i ′ + 1 ≤ j ′ ≤ n

j = j ′, k = i ′

i = i ′, j = j ′



Motivations-Cholesky’s LU decomposition

Cholesky’s LU decomposition:

1: for(i = 1; i <= n; i + +){
x = a[i][i];
for(k = 1; k < i ; k + +)

2: x = x − a[i][k] ∗ a[i][k];
3: p[i] = 1.0/sqrt(x);

for(j = i + 1; j <= n; j + +){
4: x = a[i][j];

for(k = 1; k < i ; k + +)
5: x = x − a[j][k] ∗ a[i][k];
6: a[j][i] = x ∗ p[i];

}
}

system 1:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 ≤ i ≤ n

i + 1 ≤ j ≤ n

1 ≤ k ≤ i − 1

1 ≤ i ′ ≤ n

i ′ + 1 ≤ j ′ ≤ n

j = j ′, k = i ′

i < i ′

system 2:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 ≤ i ≤ n

i + 1 ≤ j ≤ n

1 ≤ k ≤ i − 1

1 ≤ i ′ ≤ n

i ′ + 1 ≤ j ′ ≤ n

j = j ′, k = i ′

i = i ′, j < j ′

system 3:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 ≤ i ≤ n

i + 1 ≤ j ≤ n

1 ≤ k ≤ i − 1

1 ≤ i ′ ≤ n

i ′ + 1 ≤ j ′ ≤ n

j = j ′, k = i ′

i = i ′, j = j ′



Motivations-Cache line accessed by a for-loop

for i = 2 to N − 1 do
for j = 2 to N − 1 do

a(i , j) = 2∗ a(i , j)+ a(i − 1, j)+ a(i + 1, j)+ a(i , j − 1)+ a(i , j + 1)

Cache lines touched by this loop:
(Σ x , y ∶ (∃ i , j ,△i ,△j ∶

x = (i +△i − 1) ÷ 16 ∧ y = j +△j ∧ 2 ≤ i , j ≤ N − 1

∧ −1 ≤△i +△j ,△i −△j ≤ 1)
∶ 1)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 ≤ (i +△i − 1)/16 − x < 1

y = j +△j

2 ≤ i , j ≤ N − 1

−1 ≤△i +△j ,△i −△j ≤ 1

Simplify using our code
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−x ≤ 0, 16x − y −N ≤ −3

16x −N ≤ −1, 16x + y − 2N ≤ −2

1 ≤ y −N ≤ 0, −N ≤ −3

When N = 500, (Σ x , y ∶ 0 ≤ x ≤
31 ∧ 1 ≤ y ≤ 500 ∶ 1) = 16000
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Related Work

1. Fourier-Motzkin elimination: computing the rational points (thus all
the points) of a polyhedron in Rd given by m inequalities;
Complexity: polynomial in md , thus single exponential in d
(Fourier-Motzkin algorithm; L. Khachiyan, 2009)

2. Counting the number of integer points of a bounded polyhedron;
Complexity: polynomial for fixed dimention.
(A. Barvinok, 1999)

3. Deciding Presburger arithmetic such as

(∀x ∈ Z) (∃y ∈ Z) ∶ (y + y = x) ∨ (y + y + 1 = x)
Complexity: doubly exponential in d
(Fischer & Rabin, 1974).

4. Omega test, can decide Presburger arithmetic;
essential in the analysis and transformation of computer programs;

(W. Pugh, 1991).
Complexity: No complexity estimate known until our work.



Our Contribution

1. Based on the Omega test, we propose an algorithm for decomposing
a polyhedron into “simpler” polyhedra, each of them having at least
one integer point and good structural properties;

2. Under a mild assumption (almost always verified in practice), this
decomposition can be computed within

O(m2d2

d4d3

L4d
3

LP(d ,mdd4(log d + logL))) bit operations,

where LP(d ,H) is an upper bound for solving a linear program with
total bit size H and d variables;

3. Implement two versions of our algorithm in Maple:
One with equations and inequalities as input and intermediate
operations;
Another with matrices as input and intermediate operations.



Decomposing the integer points of a polyhedron

Example

Input: K1 ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

3x1 − 2x2 + x3 ≤ 7

−2x1 + 2x2 − x3 ≤ 12

−4x1 + x2 + 3x3 ≤ 15

−x2 ≤ −25

, assume x1 > x2 > x3.

Output: K 1
1 ,K

2
1 ,K

3
1 ,K

4
1 ,K

5
1 given by:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3x1 − 2x2 + x3 ≤ 7

−2x1 + 2x2 − x3 ≤ 12

−4x1 + x2 + 3x3 ≤ 15

2x2 − x3 ≤ 48

−5x2 + 13x3 ≤ 67

−x2 ≤ −25

2 ≤ x3 ≤ 17

,

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

x1 = 15

x2 = 27

x3 = 16

,

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

x1 = 18

x2 = 33

x3 = 18

,

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

x1 = 14

x2 = 25

x3 = 15

,

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x1 = 19

x2 = 50 + t

x3 = 50 + 2t

−25 ≤t ≤ −16.



Decomposing the integer points of a polyhedron

Output: K 1
1 ,K

2
1 ,K

3
1 ,K

4
1 ,K

5
1 given by:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3x1 − 2x2 + x3 ≤ 7

−2x1 + 2x2 − x3 ≤ 12

−4x1 + x2 + 3x3 ≤ 15

2x2 − x3 ≤ 48

−5x2 + 13x3 ≤ 67

−x2 ≤ −25

2 ≤ x3 ≤ 17

,

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

x1 = 15

x2 = 27

x3 = 16

,

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

x1 = 18

x2 = 33

x3 = 18

,

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

x1 = 14

x2 = 25

x3 = 15

,

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x1 = 19

x2 = 50 + t

x3 = 50 + 2t

−25 ≤t ≤ −16.

▸ An integer point solves K1 iff it solves either K 1
1 , K 2

1 , K 3
1 , K 4

1 or K 5
1 .

▸ Each of K 1
1 ,K

2
1 ,K

3
1 ,K

4
1 ,K

5
1 has at least one integer point.

▸ For each K i
1, each integer point in the projection can be lifted to an

integer point in the polyhedron.
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Algorithm

Consider the polyhedron K of R4 given below (Ax ≤ b):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2x + 3y − 4z + 3w ≤ 1

−2x − 3y + 4z − 3w ≤ −1

−13x − 18y + 24z − 20w ≤ −1

−26x − 40y + 54z − 39w ≤ 0

−24x − 38y + 49z − 31w ≤ 5

54x + 81y − 109z + 81w ≤ 2

.



Algorithm-IntegerNormalize

Procedure 1- IntegerNormalize(Ax ≤ b):

1. Solve integer solutions for (implicit) equations:
▸ Tools: Hermite normal form;
▸ Return x = Pt + q, where t is a new unknown vector with less length
than x.

2. Substitute x = Pt+ q into Ax ≤ b and remove redundant inequalities:

▸ cx ≤ d is implied by Ax ≤ b ⇐⇒ sup{−(cx − d)∣Ax ≤ b} = 0;
▸ Return Mt ≤ v.

In our example, implicit equation: 2x + 3y − 4z + 3w = 1
the systems x = Pt + q and Mt ≤ v are given by:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x = −3t1 + 2t2 − 3t3 + 2

y = 2t1 + t3 − 1

z = t2

w = t3

and

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

3t1 − 2t2 + t3 ≤ 7

−2t1 + 2t2 − t3 ≤ 12

−4t1 + t2 + 3t3 ≤ 15

−t2 ≤ −25

.
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⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
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.



Algorithm-DarkShadow

Procedure 2–DarkShadow(Mt ≤ v):
considering the variable t1, for any upper bound l1 ∶ a1t1 + a′t′ ≤ v1 with
a1 > 0 and lower bound l2 ∶ b1t1 + b′t′ ≤ v2 with b1 < 0 do:

−b1a′t′ + a1b
′t′ ≤ −b1v1 + a1v2 − (a1 − 1)(−b1 − 1) ← dark projection

returns a couple (t′,Θ), where

1. t′ stands for all t-variables except t1,

2. Θ is a linear system in the t′-variables such that any integer point
solving of Θ is the collection of all the dark projections generated by
pair of upper and lower bound of t1.

In our example, t′ = {t2, t3} and Θ is given by:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2t2 − t3 ≤ 48

−5t2 + 13t3 ≤ 67

−t2 ≤ −25
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Algorithm-definitions

real shadow: standard projection on (t2, . . . , td), denoted as R;
Let d1, . . . ,dr be the dark projections computed by DarkShadow(Mt ≤ v).
dark shadow D ∶= R ∩ d1 ∩⋯ ∩ dr
grey shadow: G ∶= R ∖D

Figure: The real, the dark and the grey shadows of a polyhedron.

(t2, t3) = (29,9) ∈ G , which can not extend to an integer solution of
Mt ≤ v. (Plugging (t2, t3) = (29,9) into Mt ≤ v yields 37

2
≤ t1 ≤ 56

3
, which

has no integer solutions.)



Algorithm-Greyshadow

Third procedure–GreyShadow(Mt ≤ v)
Disjoint decomposition: R ∖D = ⊍

1≤i≤t
Gi , where

Gi = R ∩ d1 ∩⋯ ∩ di−1 ∩ ¬di and ¬di is the negation of di for 1 ≤ i ≤ r .

Considering the variable t1 again, for any upper bound l1 ∶ a1t1 + a′t′ ≤ v1
with a1 > 0 and any lower bound l2 ∶ b1t1 + b′t′ ≤ v2 with b1 < 0 do:

1. let B ∶= ⌊(−a1b1 − a1 + b1)/a1⌋;
2. for i from 0 to B output what IntegerSolve returns when applied to

{b1t1 + b′t′ = v2 − i} ∩Mt ≤ v ∩
{−b1a′t′ + a1b

′t′ > −b1v1 + a1v2 − (a1 − 1)(−b1 − 1)},

3. replace Mt ≤ v by

Mt ≤ v ∩ {−b1a′t′ + a1b
′t′ ≤ −b1v1 + a1v2 − (a1 − 1)(−b1 − 1)}.



Algorithm-Greyshadow

Returning to our example, combining system Mt ≤ v with the negation of
2t2 − t3 ≤ 48 from Θ, yields

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2t1 + 2t2 − t3 = 12

3t1 − 2t2 + t3 ≤ 7

−4t1 + t2 + 3t3 ≤ 15

−t2 ≤ −25

−2t2 + t3 ≤ −49

IntegerNormalize
×
×
×
×
Ö
new variables t4, t5

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

t1 = t4

t2 = t5 + 1

t3 = −2t4 + 2t5 + 1

, and

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

t4 ≤ 8

−10t4 + 7t5 ≤ 11

−t5 ≤ −24

−2t4 − t5 ≤ −48

,



Algorithm-Illustration

S

D

D

⋮

D G

⋮

G

⋮ ⋮

G

D

⋮ ⋮

G

⋮ ⋮

D G

Figure: IntegerSolve



Algorithm

Continuing in this manner, the integer points of Mt ≤ v decomposes into:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3t1 − 2t2 + t3 ≤ 7

−2t1 + 2t2 − t3 ≤ 12

−4t1 + t2 + 3t3 ≤ 15

2t2 − t3 ≤ 48

−5t2 + 13t3 ≤ 67

−t2 ≤ −25

2 ≤ t3 ≤ 17

,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

t1 = 15

t2 = 27

t3 = 16

,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

t1 = 18

t2 = 33

t3 = 18

,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

t1 = 14

t2 = 25

t3 = 15

,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

t1 = 19

t2 = 50 + t6

t3 = 50 + 2t6

−25 ≤t6 ≤ −16.

.
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Complexity

Lemma
Let K be a polyhedron in Rd , defined by m inequalities.
Let fd,m,k be the number of k-dimensional faces of K . Then, we have

fd,m,k ≤ ( m

d − k
).

Therefore, we have fd,m,0 + fd,m,1 +⋯ + fd,m,d−1 ≤ md .

Notation
Given a linear program with total bit size H and with d variables
LP(d ,H): the number of bit operations required for solving it.
Karmarkar’s algorithm: LP(d ,H) ∈ O(d3.5H2 ⋅ logH ⋅ log logH).
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Complexity

Proposition
Given a polyhedron K in Rd , which is defined by m inequalities and with
maximum bit size h, one can perform Fourier-Motzkin elimination within
O(d2m2d LP(d ,2dhd2md)) bit operations.

Hypothesis
During the execution of the function call IntegerSolve(K), for any
polyhedral set K , input of a recursive call, each facet of the dark shadow
of a polyhedron is parallel to some facet of its real shadow.

Theorem
Under our Hypothesis, the function call IntegerSolve(K) runs within

O(m2d2

d4d3

L4d
3

LP(d ,mdd4(log d + logL))) bit operations.
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Experiments
IntegerSolve is implemented in the Polyhedra library and available from
www.regularchains.org

Example m d L mo Lo ?Hyp tH tP
Tetrahedron 4 3 1 1 1 yes 0.695 0.697
TruncatedTetrahedron 8 3 1 1 1 yes 1.461 1.468
Presburger 4 3 4 5 2 12 yes 0.706 0.871
Presburger 6 4 5 89 6 35 yes 0.893 0.746
Bounded 7 8 3 19 3 190 no 138.448 239.637
Bounded 8 4 3 25 5 67 yes 6.462 3.821
Bounded 9 6 3 18 6 74 no 23.574 16.763
Unbounded 2 3 4 10 61 2255 no 0.547 0.600
Unbounded 5 5 4 8 1 8 no 1.321 1.319
Unbounded 6 10 4 8 1 8 no 1.494 1.479
P91 12 3 96 5 96 no 19.318 15.458
Sys1 6 3 15 2 67 yes 2.413 1.915
Sys3 8 3 1 1 1 yes 1.481 1.479
Automatic 8 2 999 1 999 yes 0.552 0.549
Automatic2 6 4 1 1 2 yes 1.115 1.113

Table: Implementation
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Application

Solve integer programming:

minlex(x1, . . . , xd)
Ax ≤ b,
x ∈ Zd

Example
Problem:

minlex(x3, x2, x1)
3x1 − 2x2 + x3 ≤ 7

−2x1 + 2x2 − x3 ≤ 12

−4x1 + x2 + 3x3 ≤ 15

−x2 ≤ −25

x1, x2, x3 ∈ Z



Application

Example

Input: K1 ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

3x1 − 2x2 + x3 ≤ 7

−2x1 + 2x2 − x3 ≤ 12

−4x1 + x2 + 3x3 ≤ 15

−x2 ≤ −25

, assume x1 > x2 > x3.

Output: K 1
1 ,K

2
1 ,K

3
1 ,K

4
1 ,K

5
1 given by:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3x1 − 2x2 + x3 ≤ 7

−2x1 + 2x2 − x3 ≤ 12

−4x1 + x2 + 3x3 ≤ 15

2x2 − x3 ≤ 48

−5x2 + 13x3 ≤ 67

−x2 ≤ −25

2 ≤ x3 ≤ 17

,

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

x1 = 15

x2 = 27

x3 = 16

,

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

x1 = 18

x2 = 33

x3 = 18

,

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

x1 = 14

x2 = 25

x3 = 15

,

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x1 = 19

x2 = 50 + t

x3 = 50 + 2t

−25 ≤t ≤ −16.



Application

min(x3, x2, x1)
K1 ∩Z3

min(x3, x2, x1)
K 1
1 ∩Z3

min(x3, x2, x1)
K 2
1 ∩Z3

min(x3, x2, x1)
K 3
1 ∩Z3

min(x3, x2, x1)
K 4
1 ∩Z3

min(x3, x2, x1)
K 5
1 ∩Z3

(2,−8,−4) (16,27,15) (18,33,18) (15,25,14) (0,25,19)

(0,25,19)
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Summary

▸ We have presented an algorithm for computing the integer points of
a polyhedron, based on the Omega test procedure proposed by W.
Pugh.

▸ This is done by decomposing the input polyhedron into simpler
polyhedra, each of them with at least one integer point.

▸ This kind of simpler polyhedra has good structure which will help to
solve the lexicographic minimum of some variable orders.
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Summary

▸ We improve it by making use of Hermite normal form and
controlling the size of the intermediate coefficients.

▸ Assuming that each facet of the dark shadow of a polyhedron is
parallel to some facet of its real shadow, we prove that our
algorithm runs in time single exponential in the dimension d of the
ambient space.

▸ This assumption is almost always verified in practice.

Works in progress

▸ A CilkPlus version of the Polyhedra library

▸ Parametric integer programming (PIP) in support of automatic
parallelization.
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