Computing the Integer Points of a Polyhedron

Rui-Juan Jing
Joint work with
Marc Moreno Maza

SCsquare 2017, July 29

Plan

Overview

Motivations-Cholesky's LU decomposition

Cholesky's LU decomposition:
1. for(i=1;i<=n;i++){
x = a[i][i];
for(k=1;k<i k++)
2: x =x—a[i][k] * a[i][k];
3: p[i] =1.0/sqrt(x);
for(j=i+1;j<=n;j++){

4: x = a[i][j];
for(k=1;k < i k++)
5: x =x —a[j][k] * a[i][k];
6: a[j][i] = x * p[i];
}

Motivations-Cholesky's LU decomposition

Cholesky's LU decomposition:

1:

=

for(i=1;i<=n;i++){
x = a[i][i];
for(k=1;k<i k++)
x =x - ali][k] * a[i][k];
p[i] = 1.0/sqrt(x);
for(j=i+1;j<=n;j++){
x = ali][j];
for(k=1,k<i;k++)
x = x - alj][k] * a[i][k];
a[j][i]=x = p[i];
}
}

system 1: system 2:

1<i<n 1<i<n
i+1<j<n i+1<j<n
1<k<i-1 1<k<i-1
1<i"<n 1<i"<n
i"+1<j <n i"+1<j'<n
=i k=1 ji=i k=1
i<i i=i'j<j

<i<n

i+1<j<n

1<k<i-1

system 3: 1<i"<n

i"+1<j <n

=i k=1

i=i'j=j

Motivations-Cache line accessed by a for-loop

fori=2to N-1do
forj=2to N-1do
a(i,j)=2=a(i,j)+a(i-1,j)+a(i+1,j)+a(i,j-1)+a(i,j+1)

Motivations-Cache line accessed by a for-loop

for i=2to N-1do
forj=2to N-1do
a(i,j)=2+a(i,j)+a(i-1,))+a(i+1,j)+a(i,j-1)+a(i,j+1)
Cache lines touched by this loop:
(Zx,y:(3ij,800):
x=(+Ai-1)+16Ay=j+A0jA2<ij<N-1
A=1< AT+ AfAI-0j<]T)

1)

Motivations-Cache line accessed by a for-loop

for i=2to N-1do
forj=2to N-1do
a(i,j)=2+a(i,j)+a(i-1,))+a(i+1,j)+a(i,j-1)+a(i,j+1)
Cache lines touched by this loop:
(Zx,y:(3ij,800):
x=(+Ai-1)+16Ay=j+A0jA2<ij<N-1
A=1< AT+ AfAI-0j<]T)

:1)
0<(i+ai-1)/16-x<1
y=j+4j
2<ij<N-1

“1<Ai+ A, Ai-A0j<1

Motivations-Cache line accessed by a for-loop

for i=2to N-1do
forj=2to N-1do
a(i,j)=2+a(i,j)+a(i-1,))+a(i+1,j)+a(i,j-1)+a(i,j+1)
Cache lines touched by this loop:
(Zx,y:(3ij,800):
x=(+Ai-1)+16Ay=j+A0jA2<ij<N-1
A=1< AT+ AfAI-0j<]T)

1)
Simplify using our code
0<(i+2ai-1)/16-x<1 -x <0, lox-y-N<-3
y=j+24j 16x - N < -1, 1ox+y-2N<-2
2<i,j<N-1 1<y-N<O, -N<-3

“1<Ai+ A, Ai-A0j<1

Motivations-Cache line accessed by a for-loop

for i=2to N-1do
forj=2to N-1do
a(i,j)=2+a(i,j)+a(i-1,))+a(i+1,j)+a(i,j-1)+a(i,j+1)
Cache lines touched by this loop:
(X x,y:(3i,j,80,4):
x=(+Ai-1)+16Ay=j+A0jA2<ij<N-1
A=1< AT+ AfAI-0j<]T)

1)
Simplify using our code
0<(i+4i-1)/16-x<1 -x <0, l6x-y-N<-3
y=j+24j 16x - N < -1, 1ox+y-2N<-2
2<i,j<N-1 1<y-N<O, -N<-3
“I<Ai+A8f,8i-40j<1 When N =500, (£ x,y:0<x<

31A1<y<500:1) =16000

Related Work

1. Fourier-Motzkin elimination: computing the rational points (thus all
the points) of a polyhedron in RY given by m inequalities;
Complexity: polynomial in m?, thus single exponential in d
(Fourier-Motzkin algorithm; L. Khachiyan, 2009)

2. Counting the number of integer points of a bounded polyhedron;
Complexity: polynomial for fixed dimention.

(A. Barvinok, 1999)

3. Deciding Presburger arithmetic such as
(VxeZ)(3yeZ): (y+y=x)v(y+y+1l=x)
Complexity: doubly exponential in d
(Fischer & Rabin, 1974).
4. Omega test, can decide Presburger arithmetic;
essential in the analysis and transformation of computer programs;
(W. Pugh, 1991).
Complexity: No complexity estimate known until our work.

Our Contribution

1. Based on the Omega test, we propose an algorithm for decomposing
a polyhedron into “simpler” polyhedra, each of them having at least
one integer point and good structural properties;

2. Under a mild assumption (almost always verified in practice), this
decomposition can be computed within

O(m2d2 g4’ L4d3|_P(d, m9d*(logd +log L))) bit operations,

where LP(d, H) is an upper bound for solving a linear program with
total bit size H and d variables;

3. Implement two versions of our algorithm in Maple:
One with equations and inequalities as input and intermediate
operations;
Another with matrices as input and intermediate operations.

Decomposing the integer points of a polyhedron

Example
3x1 —2x +x3 <7
—2x1 +2x0 —x3 <12
Input: Kj: ,assume x; > Xp > X3.
—4x1 +xp +3x3 <15
—xp < -25

Output: K}, K2 K3, K}, K? given by:

3x1 —2x0 +x3 <7

—2x1 +2x2 — x3 < 12

X1:19
—4x1 + x> +3x3 <15 x1 =15 x; =18 x1 =14
X2 = 50+t
2x, — x3 < 48 R X2=27, X2=33, X2=257
X3 = 50 + 2t
—-5x5 + 13x3 < 67 x3 =16 x3 =18 x3 =15
-25 <t < -16.

—x3 < =25

2<x3<17

Decomposing the integer points of a polyhedron

Output: K{, K%, K, Kt K? given by:

3x1 = 2x0 +x3 <7
—2x1 +2x0 — x3 < 12
X1=19
—4x; +x +3x3 <15 x1 =15 x; =18 x1 =14
x> =50+t
2x, — x3 < 48 R X2:27, X2:337 X2:25,
x3 =50+ 2t
—5x, + 13x3 < 67 x3=16 x3 =18 x3 =15
-25 <t < -16.
—-x2 < -25
2<x3<17

» An integer point solves Kj iff it solves either K}, K7, K7, K{ or K?.
» Each of Ki, K2, K3, K, K? has at least one integer point.

» For each K{, each integer point in the projection can be lifted to an
integer point in the polyhedron.

Plan

Algorithm

Algorithm

Consider the polyhedron K of R* given below (Ax < b):

2x+3y-4z+3w<1
2x-3y+4z-3w< -1
-13x - 18y + 24z - 20w < -1
—26x—-40y +54z-39w <0
—24x -38y +49z-31w <5
54x +8ly — 109z + 81w < 2

Algorithm-IntegerNormalize

Procedure 1- IntegerNormalize(Ax < b):

1. Solve integer solutions for (implicit) equations:

» Tools: Hermite normal form;
» Return x = Pt + q, where t is a new unknown vector with less length
than x.

2. Substitute x = Pt + g into Ax < b and remove redundant inequalities:

» cx < d is implied by Ax <b <= sup{-(cx-d)|Ax<b} =0;
> Return Mt <v.

Algorithm-IntegerNormalize

Procedure 1- IntegerNormalize(Ax < b):

1. Solve integer solutions for (implicit) equations:

» Tools: Hermite normal form;
» Return x = Pt + q, where t is a new unknown vector with less length
than x.

2. Substitute x = Pt + g into Ax < b and remove redundant inequalities:

» cx < d is implied by Ax <b <= sup{-(cx-d)|Ax<b} =0;
> Return Mt <v.

In our example, implicit equation: 2x +3y —4z+3w =1
the systems x = Pt + q and Mt < v are given by:

x=-3t; +2t, —3t3+ 2 3t -2t +t3<7

y=2t]+t3—1 =2t +2tp —t3 < 12
and

zZ=1 —At; + tp +3t3< 15

w=1t3 -t <-25

Algorithm-DarkShadow

Procedure 2—-DarkShadow(Mt < v):
considering the variable t;, for any upper bound / : a;t; +a’t’ < vy with
a; >0 and lower bound k: bit; +b't’ < v» with b; <0 do:

—bja't' + a1b’'t’ < -byvy + a1vo — (a1 - 1)(—by — 1) < dark projection

returns a couple (t’,©), where
1. t’ stands for all t-variables except t1,

2. © is a linear system in the t'-variables such that any integer point
solving of © is the collection of all the dark projections generated by
pair of upper and lower bound of t;.

Algorithm-DarkShadow

Procedure 2—-DarkShadow(Mt < v):
considering the variable t;, for any upper bound / : a;t; +a’t’ < vy with
a; >0 and lower bound k: bit; +b't’ < v» with b; <0 do:

—bja't' + a1b’'t’ < -byvy + a1vo — (a1 - 1)(—by — 1) < dark projection

returns a couple (t’,©), where
1. t’ stands for all t-variables except t1,

2. © is a linear system in the t'-variables such that any integer point
solving of © is the collection of all the dark projections generated by
pair of upper and lower bound of t;.

In our example, t' = {t,, t3} and © is given by:

2t, — t3 <48
=5ty + 13t3 <67
-ty <-25

Algorithm-definitions

real shadow: standard projection on (ty,...,ts), denoted as R;

Let di,...,d, be the dark projections computed by DarkShadow(Mt < v).
dark shadow D .= Rnd;n---nd,

grey shadow: G : =R~ D

Sy m»®
X3 0 26 28 = / 2B 30 32 |
X2

Figure: The real, the dark and the grey shadows of a polyhedron.

(t2, t3) = (29,9) € G, which can not extend to an integer solution of
Mt <v. (Plugging (2, t3) = (29,9) into Mt < v yields 3 <t; < %, which

has no integer solutions.)

Algorithm-Greyshadow

Third procedure—GreyShadow(Mt < v)

Disjoint decomposition: R\ D = [G;j, where
1<i<t
Gi=Rndin--ndi_yn ~d; and 7d; is the negation of d; for 1 <i<r.

Considering the variable t; again, for any upper bound / : ajt; +a’t' <w
with a; > 0 and any lower bound b : bit; + b't’ < v, with b; <0 do:

1. let B:= [(—albl —a; + b1)/alj;

2. for i from 0 to B output what IntegerSolve returns when applied to
{b1t1+b’t,: Vg—i}ﬂMtSVﬂ
{—bla’t’ + alb’t’ > —b1 Vi+aivp — (31 - 1)(—b1 - 1)},

3. replace Mt <v by

Mt<vn {—bla’t’ + alb’t’ < —bjvi +ajvo — (81 - 1)(—b1 - 1)}

Algorithm-Greyshadow

Returning to our example, combining system Mt < v with the negation of
2t, — t3 < 48 from O, yields
—2t1 + 2t —t3 =12
3t -2t +t3< 7
-4t + tp +3t3< 15
-t <-25
—2tr + t5 < —49

IntegerNormalize | new variables ta, ts

ta <8
t1 =ty
10ty + 7t5 < 11
b=ts+1 , an R
—t5 < —24

t3 =2t +2t5 +1
3 * > 2ty — t5 < —48

Algorithm-Illustration

S

YR
D

G
/N /N
D G D G
IV IN UYL
1y Iy
DG DG

Figure: IntegerSolve

Algorithm

Continuing in this manner, the integer points of Mt < v decomposes into:

3t -2+ t3<7
—2t1 + 2t —t3 < 12

t1 =19
-4t + trp +3t3 < 15 t;1 =15 t; =18 t1 =14
tb =50+ tg
2t —t3<48 ,{tr=27,{t=33,{t, =25, .
t3 = 50 + 214
-5t + 13t3 <67 t3 =16 t3 =18 t3 =15
-25 <t5 < -16.

-t < -25
2<t3<17

Plan

Complexity analysis

Complexity

Lemma
Let K be a polyhedron in RY, defined by m inequalities.
Let fy m k be the number of k-dimensional faces of K. Then, we have

m
fymk < .
d.mk (d—k)

Therefore, we have fy mo + fym1+ -+ famd1 < m.

Complexity

Lemma
Let K be a polyhedron in RY, defined by m inequalities.
Let fy m k be the number of k-dimensional faces of K. Then, we have

m
fymk < .
d.mk (d—k)

Therefore, we have fy mo + fym1+ -+ famd1 < m.

Notation

Given a linear program with total bit size H and with d variables
LP(d, H): the number of bit operations required for solving it.
Karmarkar's algorithm: LP(d, H) € O(d*®H?-log H - loglog H).

Complexity

Proposition
Given a polyhedron K in R?, which is defined by m inequalities and with

maximum bit size h, one can perform Fourier-Motzkin elimination within
O(d?> m*@LP(d,29hd*m?)) bit operations.

Hypothesis

During the execution of the function call IntegerSolve(K), for any
polyhedral set K, input of a recursive call, each facet of the dark shadow
of a polyhedron is parallel to some facet of its real shadow.

Theorem
Under our Hypothesis, the function call IntegerSolve(K) runs within

O(m*® d*® 1%’ LP(d, m?d*(log d + log L))) bit operations.

Plan

Experiments

Experiments

IntegerSolve is implemented in the Polyhedra library and available from

www.regularchains.org

Example m d L me Lo ?Hyp ty tp
Tetrahedron 4 3 1 1 1 yes 0.695 0.697
TruncatedTetrahedron 8 3 1 1 1 yes 1.461 1.468
Presburger 4 3 4 5 2 12 yes 0.706 0.871
Presburger 6 4 5 89 6 35 yes 0.893 0.746
Bounded 7 8 3 19 3 190 no 138.448 239.637
Bounded 8 4 3 25 5 67 yes 6.462 3.821
Bounded 9 6 3 18 6 74 no 23.574 16.763
Unbounded 2 3 4 10 61 2255 no 0.547 0.600
Unbounded 5 5 4 8 1 8 no 1.321 1.319
Unbounded 6 10 4 8 1 8 no 1.494 1.479
P91 12 3 96 5 96 no 19.318 15.458
Sysy 6 3 15 2 67 yes 2.413 1.915
Sys3 8 3 1 1 1 yes 1.481 1.479
Automatic 8 2 999 1 999 yes 0.552 0.549
Automatic2 6 4 1 1 2 yes 1.115 1.113

Table: Implementation

Plan

Application

Application

Solve integer programming:

minjex (X1, ..., Xq)
Ax < b,
VA
Example
Problem:

minjex (X3, X2, X1)
3x1 —2x0+x3 <7

—2x1 +2xp — x3 <12
—4x1+x2+3x3 <15
-x < -25

X1,X2,X3 € Z

Application

Example
3x1 —2x +x3 <7
—2x1 +2x0 —x3 <12
Input: Kj: ,assume x; > Xp > X3.
—4x1 +xp +3x3 <15

—xp < -25

Output: K}, K2 K3, K}, K? given by:

3x1 —2x0 +x3 <7

—2x1 +2x2 — x3 < 12

X1:19
—4x1 + x> +3x3 <15 x1 =15 x; =18 x1 =14
X2 = 50+t
2x, — x3 < 48 R X2=27, X2=33, X2=257
X3 = 50 + 2t
—-5x5 + 13x3 < 67 x3 =16 x3 =18 x3 =15
-25 <t < -16.

—x3 < =25

2<x3<17

Application

min(x3, X2, X1)
Kl ﬂZ3

- I

min(xs, X2,x1) mMin(xs,x2,x1) min(x3,x2,x1) min(x3,xz, x1) min(x3, x2, x1)
KinZ K?n17? Kinz? Kinz? K n7?

l | | l l

(2,-8,-4) (16,27,15) (18,33,18) (15,25,14) (0,25,19)

|

(0,25,19)

Plan

Summary

Summary

» We have presented an algorithm for computing the integer points of
a polyhedron, based on the Omega test procedure proposed by W.
Pugh.

Summary

» We have presented an algorithm for computing the integer points of

a polyhedron, based on the Omega test procedure proposed by W.
Pugh.

» This is done by decomposing the input polyhedron into simpler
polyhedra, each of them with at least one integer point.

Summary

» We have presented an algorithm for computing the integer points of
a polyhedron, based on the Omega test procedure proposed by W.
Pugh.

» This is done by decomposing the input polyhedron into simpler
polyhedra, each of them with at least one integer point.

» This kind of simpler polyhedra has good structure which will help to
solve the lexicographic minimum of some variable orders.

Summary

» We improve it by making use of Hermite normal form and
controlling the size of the intermediate coefficients.

Summary

» We improve it by making use of Hermite normal form and
controlling the size of the intermediate coefficients.

» Assuming that each facet of the dark shadow of a polyhedron is
parallel to some facet of its real shadow, we prove that our
algorithm runs in time single exponential in the dimension d of the
ambient space.

Summary

» We improve it by making use of Hermite normal form and
controlling the size of the intermediate coefficients.

» Assuming that each facet of the dark shadow of a polyhedron is
parallel to some facet of its real shadow, we prove that our
algorithm runs in time single exponential in the dimension d of the
ambient space.

» This assumption is almost always verified in practice.

Summary

» We improve it by making use of Hermite normal form and
controlling the size of the intermediate coefficients.

» Assuming that each facet of the dark shadow of a polyhedron is
parallel to some facet of its real shadow, we prove that our
algorithm runs in time single exponential in the dimension d of the
ambient space.

» This assumption is almost always verified in practice.

Works in progress

» A CilkPlus version of the Polyhedra library

» Parametric integer programming (PIP) in support of automatic
parallelization.

	Overview
	Algorithm
	Complexity analysis
	Experiments
	Application
	Summary

