Computing the Integer Points of a Polyhedron

Rui-Juan Jing Joint work with Marc Moreno Maza

SCsquare 2017, July 29

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Plan

Overview

Algorithm

Complexity analysis

Experiments

Application

Summary

▲□▶ <圖▶ < ≧▶ < ≧▶ = のQ@</p>

Motivations-Cholesky's LU decomposition

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Cholesky's LU decomposition:

1:
$$for(i = 1; i \le n; i + +)$$
{
 $x = a[i][i];$
 $for(k = 1; k < i; k + +)$
2: $x = x - a[i][k] * a[i][k];$
 $g[i] = 1.0/sqrt(x);$
 $for(j = i + 1; j \le n; j + +)$ {
4: $x = a[i][j];$
 $for(k = 1; k < i; k + +)$
5: $x = x - a[j][k] * a[i][k];$
 $for(k = 1; k < i; k + p];$
6: $a[j][i] = x * p[i];$
 }

Motivations-Cholesky's LU decomposition

system 1: system 2: $1 \leq i \leq n$ $1 \leq i \leq n$ Cholesky's LU decomposition: $i + 1 \le j \le n$ $1 \le k \le i - 1$ $i+1 \le j \le n$ 1: for $(i = 1; i \le n; i + +)$ $1 \leq k \leq i-1$ x = a[i][i]; $1 \le i' \le n$ $\left\{ 1 \leq i' \leq n \right\}$ $\begin{cases} 1 \le i' \le n \\ i' + 1 \le j' \le n \\ j = j', k = i' \\ i < i' \end{cases} \qquad \begin{cases} 1 \le i' \le n \\ i' + 1 \le j' \le n \\ j = j', k = i' \\ i = i', j < j' \end{cases}$ for (k = 1; k < i; k + +)2: x = x - a[i][k] * a[i][k];3: p[i] = 1.0/sqrt(x); for $(j = i + 1; j \le n; j + +)$ system 3: $\begin{cases} 1 \le i \le n \\ i+1 \le j \le n \\ 1 \le k \le i-1 \\ 1 \le i' \le n \\ i'+1 \le j' \le n \\ j=j', k=i' \\ i=i', j=j' \end{cases}$ 4: x = a[i][i];for (k = 1; k < i; k + +)5: x = x - a[j][k] * a[i][k];a[i][i] = x * p[i];6:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

for
$$i = 2$$
 to $N - 1$ do
for $j = 2$ to $N - 1$ do
 $a(i,j) = 2 * a(i,j) + a(i-1,j) + a(i+1,j) + a(i,j-1) + a(i,j+1)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

for
$$i = 2$$
 to $N - 1$ do
for $j = 2$ to $N - 1$ do
 $a(i,j) = 2 * a(i,j) + a(i-1,j) + a(i+1,j) + a(i,j-1) + a(i,j+1)$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Cache lines touched by this loop: $(\Sigma x, y : (\exists i, j, \triangle i, \triangle j : x = (i + \triangle i - 1) \div 16 \land y = j + \triangle j \land 2 \le i, j \le N - 1$ $\land -1 \le \triangle i + \triangle j, \triangle i - \triangle j \le 1)$:1)

for
$$i = 2$$
 to $N - 1$ do
for $j = 2$ to $N - 1$ do
 $a(i,j) = 2 * a(i,j) + a(i-1,j) + a(i+1,j) + a(i,j-1) + a(i,j+1)$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Cache lines touched by this loop:

$$(\Sigma x, y : (\exists i, j, \triangle i, \triangle j : x = (i + \triangle i - 1) \div 16 \land y = j + \triangle j \land 2 \le i, j \le N - 1$$

$$\land -1 \le \triangle i + \triangle j, \triangle i - \triangle j \le 1)$$

$$:1)$$

$$\begin{cases} 0 \le (i + \bigtriangleup i - 1)/16 - x < 1 \\ y = j + \bigtriangleup j \\ 2 \le i, j \le N - 1 \\ -1 \le \bigtriangleup i + \bigtriangleup j, \bigtriangleup i - \bigtriangleup j \le 1 \end{cases}$$

for
$$i = 2$$
 to $N - 1$ do
for $j = 2$ to $N - 1$ do
 $a(i,j) = 2 * a(i,j) + a(i-1,j) + a(i+1,j) + a(i,j-1) + a(i,j+1)$

Cache lines touched by this loop:

$$(\Sigma x, y : (\exists i, j, \triangle i, \triangle j : x = (i + \triangle i - 1) \div 16 \land y = j + \triangle j \land 2 \le i, j \le N - 1$$

$$\land -1 \le \triangle i + \triangle j, \triangle i - \triangle j \le 1)$$
:1)

$$\begin{cases} 0 \le (i + \bigtriangleup i - 1)/16 - x < 1 \\ y = j + \bigtriangleup j \\ 2 \le i, j \le N - 1 \\ -1 \le \bigtriangleup i + \bigtriangleup j, \bigtriangleup i - \bigtriangleup j \le 1 \end{cases} \qquad \begin{cases} -x \le 0, & 16x - y - N \le -3 \\ 16x - N \le -1, & 16x + y - 2N \le -2 \\ 1 \le y - N \le 0, & -N \le -3 \end{cases}$$

Simplify using our code

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

for
$$i = 2$$
 to $N - 1$ do
for $j = 2$ to $N - 1$ do
 $a(i,j) = 2 * a(i,j) + a(i-1,j) + a(i+1,j) + a(i,j-1) + a(i,j+1)$

Cache lines touched by this loop:

$$(\Sigma x, y : (\exists i, j, \triangle i, \triangle j : x = (i + \triangle i - 1) \div 16 \land y = j + \triangle j \land 2 \le i, j \le N - 1$$

$$\land -1 \le \triangle i + \triangle j, \triangle i - \triangle j \le 1)$$

$$:1)$$

$$\begin{cases} 0 \le (i + \triangle i - 1)/16 - x < 1 \\ y = j + \triangle j \\ 2 \le i, j \le N - 1 \\ -1 \le \triangle i + \triangle j, \triangle i - \triangle j \le 1 \end{cases}$$

Simplify using our code $\begin{cases}
-x \le 0, & 16x - y - N \le -3 \\
16x - N \le -1, & 16x + y - 2N \le -2 \\
1 \le y - N \le 0, & -N \le -3
\end{cases}$ When $N = 500, (\Sigma x, y : 0 \le x \le 31 \land 1 \le y \le 500 : 1) = 16000$

Related Work

- 1. Fourier-Motzkin elimination: computing the rational points (thus all the points) of a polyhedron in \mathbb{R}^d given by *m* inequalities; Complexity: polynomial in m^d , thus single exponential in *d* (Fourier-Motzkin algorithm; L. Khachiyan, 2009)
- Counting the number of integer points of a bounded polyhedron; Complexity: polynomial for fixed dimention. (A. Barvinok, 1999)
- 3. Deciding Presburger arithmetic such as

 $(\forall x \in \mathbb{Z}) (\exists y \in \mathbb{Z}) : (y + y = x) \lor (y + y + 1 = x)$

Complexity: doubly exponential in *d* (Fischer & Rabin, 1974).

4. Omega test, can decide Presburger arithmetic;

essential in the analysis and transformation of computer programs; (W. Pugh, 1991).

Complexity: No complexity estimate known until our work.

Our Contribution

- Based on the Omega test, we propose an algorithm for decomposing a polyhedron into "simpler" polyhedra, each of them having at least one integer point and good structural properties;
- 2. Under a mild assumption (almost always verified in practice), this decomposition can be computed within

 $O(m^{2d^2}d^{4d^3}L^{4d^3}LP(d, m^d d^4(\log d + \log L)))$ bit operations,

where LP(d, H) is an upper bound for solving a linear program with total bit size H and d variables;

 Implement two versions of our algorithm in Maple: One with equations and inequalities as input and intermediate operations;

Another with matrices as input and intermediate operations.

Decomposing the integer points of a polyhedron

Example
Input:
$$K_1: \begin{cases} 3x_1 - 2x_2 + x_3 \le 7 \\ -2x_1 + 2x_2 - x_3 \le 12 \\ -4x_1 + x_2 + 3x_3 \le 15 \\ -x_2 \le -25 \end{cases}$$
, assume $x_1 > x_2 > x_3$.

Output: $K_1^1, K_1^2, K_1^3, K_1^4, K_1^5$ given by:

$$\begin{cases} 3x_1 - 2x_2 + x_3 \le 7 \\ -2x_1 + 2x_2 - x_3 \le 12 \\ -4x_1 + x_2 + 3x_3 \le 15 \\ 2x_2 - x_3 \le 48 \\ -5x_2 + 13x_3 \le 67 \\ -x_2 \le -25 \\ 2 \le x_3 \le 17 \end{cases} \begin{pmatrix} x_1 = 15 \\ x_2 = 27 \\ x_3 = 16 \\ x_2 = 33 \\ x_3 = 18 \\ x_1 = 14 \\ x_2 = 25 \\ x_3 = 15 \\ x_3 = 15 \\ x_3 = 15 \\ x_1 = 19 \\ x_2 = 50 + t \\ x_3 = 50 + 2t \\ -25 \le t \le -16. \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Decomposing the integer points of a polyhedron

Output: $K_1^1, K_1^2, K_1^3, K_1^4, K_1^5$ given by:

$$\begin{array}{l} 3x_1 - 2x_2 + x_3 \leq 7 \\ -2x_1 + 2x_2 - x_3 \leq 12 \\ -4x_1 + x_2 + 3x_3 \leq 15 \\ 2x_2 - x_3 \leq 48 \\ -5x_2 + 13x_3 \leq 67 \\ -x_2 \leq -25 \\ 2 \leq x_3 \leq 17 \end{array}, \begin{cases} x_1 = 15 \\ x_2 = 27 \\ x_3 = 16 \end{cases} \begin{cases} x_1 = 18 \\ x_2 = 33 \\ x_3 = 18 \\ x_3 = 18 \end{cases} \begin{cases} x_1 = 14 \\ x_2 = 25 \\ x_3 = 15 \\ x_3 = 15 \\ x_3 = 15 \\ -25 \leq t \leq -16. \end{cases}$$

- An integer point solves K_1 iff it solves either K_1^1 , K_1^2 , K_1^3 , K_1^4 or K_1^5 .
- Each of $K_1^1, K_1^2, K_1^3, K_1^4, K_1^5$ has at least one integer point.
- For each Kⁱ₁, each integer point in the projection can be lifted to an integer point in the polyhedron.

Plan

Overview

Algorithm

Complexity analysis

Experiments

Application

Summary

▲□▶ <圖▶ < ≧▶ < ≧▶ = のQ@</p>

Algorithm

Consider the polyhedron K of \mathbb{R}^4 given below $(\mathbf{Ax} \leq \mathbf{b})$:

$$\begin{cases} 2x + 3y - 4z + 3w \le 1\\ -2x - 3y + 4z - 3w \le -1\\ -13x - 18y + 24z - 20w \le -1\\ -26x - 40y + 54z - 39w \le 0\\ -24x - 38y + 49z - 31w \le 5\\ 54x + 81y - 109z + 81w \le 2 \end{cases}$$

・ロト・日本・モト・モート ヨー うへで

Algorithm-IntegerNormalize

Procedure 1- IntegerNormalize($Ax \le b$):

- 1. Solve integer solutions for (implicit) equations:
 - Tools: Hermite normal form;
 - Return $\mathbf{x} = \mathbf{Pt} + \mathbf{q}$, where t is a new unknown vector with less length than \mathbf{x} .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 2. Substitute $\mathbf{x} = \mathbf{Pt} + \mathbf{q}$ into $\mathbf{Ax} \le \mathbf{b}$ and remove redundant inequalities:
 - $\mathbf{cx} \leq d$ is implied by $\mathbf{Ax} \leq \mathbf{b} \iff \sup\{-(\mathbf{cx} d) | \mathbf{Ax} \leq \mathbf{b}\} = 0;$
 - Return $\mathbf{Mt} \leq \mathbf{v}$.

Algorithm-IntegerNormalize

Procedure 1- IntegerNormalize($Ax \le b$):

- 1. Solve integer solutions for (implicit) equations:
 - Tools: Hermite normal form;
 - Return $\mathbf{x} = \mathbf{Pt} + \mathbf{q}$, where t is a new unknown vector with less length than \mathbf{x} .
- 2. Substitute $\mathbf{x} = \mathbf{Pt} + \mathbf{q}$ into $\mathbf{Ax} \le \mathbf{b}$ and remove redundant inequalities:

•
$$\mathbf{cx} \le d$$
 is implied by $\mathbf{Ax} \le \mathbf{b} \iff \sup\{-(\mathbf{cx} - d) | \mathbf{Ax} \le \mathbf{b}\} = 0;$
• Return $\mathbf{Mt} \le \mathbf{v}$.

In our example, implicit equation: 2x + 3y - 4z + 3w = 1the systems $\mathbf{x} = \mathbf{Pt} + \mathbf{q}$ and $\mathbf{Mt} \le \mathbf{v}$ are given by:

$$\begin{cases} x = -3t_1 + 2t_2 - 3t_3 + 2 \\ y = 2t_1 + t_3 - 1 \\ z = t_2 \\ w = t_3 \end{cases} \text{ and } \begin{cases} 3t_1 - 2t_2 + t_3 \le 7 \\ -2t_1 + 2t_2 - t_3 \le 12 \\ -4t_1 + t_2 + 3t_3 \le 15 \\ -t_2 \le -25 \end{cases}$$

◆□> ◆□> ◆三> ◆三> ・三 ・ のへで

Algorithm-DarkShadow

Procedure 2-DarkShadow($Mt \le v$):

considering the variable t_1 , for any upper bound $l_1 : a_1t_1 + \mathbf{a't'} \le v_1$ with $a_1 > 0$ and lower bound $l_2 : b_1t_1 + \mathbf{b't'} \le v_2$ with $b_1 < 0$ do:

 $-b_1\mathbf{a't'} + a_1\mathbf{b't'} \le -b_1v_1 + a_1v_2 - (a_1 - 1)(-b_1 - 1) \leftarrow \text{dark projection}$

returns a couple (\mathbf{t}', Θ) , where

- 1. \mathbf{t}' stands for all \mathbf{t} -variables except t_1 ,
- 2. Θ is a linear system in the t'-variables such that any integer point solving of Θ is the collection of all the dark projections generated by pair of upper and lower bound of t_1 .

Algorithm-DarkShadow

Procedure 2-DarkShadow($Mt \le v$):

considering the variable t_1 , for any upper bound $l_1 : a_1t_1 + \mathbf{a't'} \le v_1$ with $a_1 > 0$ and lower bound $l_2 : b_1t_1 + \mathbf{b't'} \le v_2$ with $b_1 < 0$ do:

 $-b_1\mathbf{a't'} + a_1\mathbf{b't'} \le -b_1v_1 + a_1v_2 - (a_1 - 1)(-b_1 - 1) \leftarrow \text{dark projection}$

returns a couple (\mathbf{t}', Θ) , where

- 1. \mathbf{t}' stands for all \mathbf{t} -variables except t_1 ,
- Θ is a linear system in the t'-variables such that any integer point solving of Θ is the collection of all the dark projections generated by pair of upper and lower bound of t₁.

In our example, $\mathbf{t}' = \{t_2, t_3\}$ and Θ is given by:

$$\begin{cases} 2t_2 - t_3 \le 48\\ -5t_2 + 13t_3 \le 67\\ -t_2 \le -25 \end{cases}$$

Algorithm-definitions

real shadow: standard projection on (t_2, \ldots, t_d) , denoted as R; Let d_1, \ldots, d_r be the dark projections computed by DarkShadow($\mathbf{Mt} \leq \mathbf{v}$). *dark shadow* $D := R \cap d_1 \cap \cdots \cap d_r$ grey shadow: $G := R \setminus D$

Figure: The real, the dark and the grey shadows of a polyhedron.

 $(t_2, t_3) = (29, 9) \in G$, which can not extend to an integer solution of $\mathbf{Mt} \leq \mathbf{v}$. (Plugging $(t_2, t_3) = (29, 9)$ into $\mathbf{Mt} \leq \mathbf{v}$ yields $\frac{37}{2} \leq t_1 \leq \frac{56}{3}$, which has no integer solutions.)

Algorithm-Greyshadow

Third procedure–GreyShadow($\mathbf{Mt} \le \mathbf{v}$) Disjoint decomposition: $R \setminus D = \bigcup_{1 \le i \le t} G_i$, where $G_i = R \cap d_1 \cap \cdots \cap d_{i-1} \cap \neg d_i$ and $\neg d_i$ is the negation of d_i for $1 \le i \le r$.

Considering the variable t_1 again, for any upper bound $l_1 : a_1t_1 + \mathbf{a't'} \le v_1$ with $a_1 > 0$ and any lower bound $l_2 : b_1t_1 + \mathbf{b't'} \le v_2$ with $b_1 < 0$ do:

- 1. let $B := \lfloor (-a_1b_1 a_1 + b_1)/a_1 \rfloor;$
- 2. for *i* from 0 to *B* output what IntegerSolve returns when applied to $\{b_1t_1 + \mathbf{b't'} = v_2 i\} \cap \mathbf{Mt} \le \mathbf{v} \cap \{-b_1\mathbf{a't'} + a_1\mathbf{b't'} > -b_1v_1 + a_1v_2 (a_1 1)(-b_1 1)\},\$
- 3. replace $Mt \le v$ by

 $\mathbf{Mt} \leq \mathbf{v} \cap \{-b_1 \mathbf{a}' \mathbf{t}' + a_1 \mathbf{b}' \mathbf{t}' \leq -b_1 v_1 + a_1 v_2 - (a_1 - 1)(-b_1 - 1)\}.$

Algorithm-Greyshadow

Returning to our example, combining system $Mt \le v$ with the negation of $2t_2 - t_3 \le 48$ from Θ , yields

$$\begin{cases} -2t_1 + 2t_2 - t_3 = 12\\ 3t_1 - 2t_2 + t_3 \le 7\\ -4t_1 + t_2 + 3t_3 \le 15\\ -t_2 \le -25\\ -2t_2 + t_3 \le -49 \end{cases}$$

IntegerNormalize \downarrow new variables t_4, t_5
$$\begin{cases} t_1 = t_4\\ t_2 = t_5 + 1\\ t_3 = -2t_4 + 2t_5 + 1 \end{cases}$$
 and
$$\begin{cases} t_4 \le 8\\ -10t_4 + 7t_5 \le 11\\ -t_5 \le -24\\ -2t_4 - t_5 \le -48 \end{cases}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

Algorithm-Illustration

Figure: IntegerSolve

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Algorithm

Continuing in this manner, the integer points of $Mt \leq \nu$ decomposes into:

$$\begin{cases} 3t_1 - 2t_2 + t_3 \le 7 \\ -2t_1 + 2t_2 - t_3 \le 12 \\ -4t_1 + t_2 + 3t_3 \le 15 \\ 2t_2 - t_3 \le 48 \\ -5t_2 + 13t_3 \le 67 \\ -t_2 \le -25 \\ 2 \le t_3 \le 17 \end{cases} \begin{cases} t_1 = 15 \\ t_2 = 27 \\ t_3 = 16 \end{cases} \begin{cases} t_1 = 18 \\ t_2 = 33 \\ t_3 = 18 \end{cases} \begin{cases} t_1 = 14 \\ t_2 = 25 \\ t_3 = 15 \end{cases} \begin{cases} t_1 = 19 \\ t_2 = 50 + t_6 \\ t_3 = 50 + 2t_6 \\ -25 \le t_6 \le -16. \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Plan

Overview

Algorithm

Complexity analysis

Experiments

Application

Summary

★□> <圖> < E> < E> E のQ@

Complexity

Lemma

Let K be a polyhedron in \mathbb{R}^d , defined by m inequalities. Let $f_{d,m,k}$ be the number of k-dimensional faces of K. Then, we have

$$f_{d,m,k} \leq \binom{m}{d-k}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Therefore, we have $f_{d,m,0} + f_{d,m,1} + \cdots + f_{d,m,d-1} \leq m^d$.

Complexity

Lemma

Let K be a polyhedron in \mathbb{R}^d , defined by m inequalities. Let $f_{d,m,k}$ be the number of k-dimensional faces of K. Then, we have

$$f_{d,m,k} \leq \binom{m}{d-k}.$$

Therefore, we have $f_{d,m,0} + f_{d,m,1} + \cdots + f_{d,m,d-1} \leq m^d$.

Notation

Given a linear program with total bit size H and with d variables LP(d, H): the number of bit operations required for solving it. Karmarkar's algorithm: $LP(d, H) \in O(d^{3.5}H^2 \cdot \log H \cdot \log \log H)$.

Complexity

Proposition

Given a polyhedron K in \mathbb{R}^d , which is defined by m inequalities and with maximum bit size h, one can perform Fourier-Motzkin elimination within $O(d^2 m^{2d} \operatorname{LP}(d, 2^d h d^2 m^d))$ bit operations.

Hypothesis

During the execution of the function call IntegerSolve(K), for any polyhedral set K, input of a recursive call, each facet of the dark shadow of a polyhedron is parallel to some facet of its real shadow.

Theorem

Under our Hypothesis, the function call IntegerSolve(K) runs within $O(m^{2d^2}d^{4d^3}L^{4d^3}LP(d, m^d d^4(\log d + \log L)))$ bit operations.

Plan

Overview

Algorithm

Complexity analysis

Experiments

Application

Summary

Experiments

IntegerSolve is implemented in the Polyhedra library and available from www.regularchains.org

Example	т	d	L	$m_{ m o}$	Lo	?Hyp	^t H	^t P
Tetrahedron	4	3	1	1	1	yes	0.695	0.697
TruncatedTetrahedron	8	3	1	1	1	yes	1.461	1.468
Presburger 4	3	4	5	2	12	yes	0.706	0.871
Presburger 6	4	5	89	6	35	yes	0.893	0.746
Bounded 7	8	3	19	3	190	no	138.448	239.637
Bounded 8	4	3	25	5	67	yes	6.462	3.821
Bounded 9	6	3	18	6	74	no	23.574	16.763
Unbounded 2	3	4	10	61	2255	no	0.547	0.600
Unbounded 5	5	4	8	1	8	no	1.321	1.319
Unbounded 6	10	4	8	1	8	no	1.494	1.479
P91	12	3	96	5	96	no	19.318	15.458
Sys ₁	6	3	15	2	67	yes	2.413	1.915
Sys ₃	8	3	1	1	1	yes	1.481	1.479
Automatic	8	2	999	1	999	yes	0.552	0.549
Automatic2	6	4	1	1	2	yes	1.115	1.113

Table: Implementation

Plan

Overview

Algorithm

Complexity analysis

Experiments

Application

Summary

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ → 圖 - 釣�?

Application

Solve integer programming:

$$\min_{\text{lex}}(x_1,\ldots,x_d)$$

$$\mathbf{Ax} \leq \mathbf{b},$$

$$\mathbf{x} \in \mathbb{Z}^d$$

Example

Problem:

$$\min_{lex}(x_3, x_2, x_1) 3x_1 - 2x_2 + x_3 \le 7 -2x_1 + 2x_2 - x_3 \le 12 -4x_1 + x_2 + 3x_3 \le 15 -x_2 \le -25 x_1, x_2, x_3 \in \mathbb{Z}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Application

Example
Input:
$$K_1: \begin{cases} 3x_1 - 2x_2 + x_3 \le 7 \\ -2x_1 + 2x_2 - x_3 \le 12 \\ -4x_1 + x_2 + 3x_3 \le 15 \\ -x_2 \le -25 \end{cases}$$
, assume $x_1 > x_2 > x_3$.

Output: $K_1^1, K_1^2, K_1^3, K_1^4, K_1^5$ given by:

$$\begin{cases} 3x_1 - 2x_2 + x_3 \le 7 \\ -2x_1 + 2x_2 - x_3 \le 12 \\ -4x_1 + x_2 + 3x_3 \le 15 \\ 2x_2 - x_3 \le 48 \\ -5x_2 + 13x_3 \le 67 \\ -x_2 \le -25 \\ 2 \le x_3 \le 17 \end{cases}, \begin{cases} x_1 = 15 \\ x_2 = 27 \\ x_3 = 16 \end{cases}, \begin{cases} x_1 = 18 \\ x_2 = 33 \\ x_3 = 18 \\ x_3 = 18 \end{cases}, \begin{cases} x_1 = 14 \\ x_2 = 25 \\ x_3 = 15 \\ x_3 = 15 \\ -25 \le t \le -16. \end{cases}$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = 三 の < ⊙

Application

Plan

Overview

Algorithm

Complexity analysis

Experiments

Application

Summary

(4日) (個) (目) (目) (目) (の)

 We have presented an algorithm for computing the integer points of a polyhedron, based on the Omega test procedure proposed by W. Pugh.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 We have presented an algorithm for computing the integer points of a polyhedron, based on the Omega test procedure proposed by W. Pugh.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

This is done by decomposing the input polyhedron into simpler polyhedra, each of them with at least one integer point.

- We have presented an algorithm for computing the integer points of a polyhedron, based on the Omega test procedure proposed by W. Pugh.
- This is done by decomposing the input polyhedron into simpler polyhedra, each of them with at least one integer point.
- This kind of simpler polyhedra has good structure which will help to solve the lexicographic minimum of some variable orders.

• We improve it by making use of Hermite normal form and controlling the size of the intermediate coefficients.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- We improve it by making use of Hermite normal form and controlling the size of the intermediate coefficients.
- Assuming that each facet of the dark shadow of a polyhedron is parallel to some facet of its real shadow, we prove that our algorithm runs in time single exponential in the dimension d of the ambient space.

- We improve it by making use of Hermite normal form and controlling the size of the intermediate coefficients.
- Assuming that each facet of the dark shadow of a polyhedron is parallel to some facet of its real shadow, we prove that our algorithm runs in time single exponential in the dimension d of the ambient space.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

This assumption is almost always verified in practice.

- We improve it by making use of Hermite normal form and controlling the size of the intermediate coefficients.
- Assuming that each facet of the dark shadow of a polyhedron is parallel to some facet of its real shadow, we prove that our algorithm runs in time single exponential in the dimension d of the ambient space.
- This assumption is almost always verified in practice.

Works in progress

- A CilkPlus version of the Polyhedra library
- Parametric integer programming (PIP) in support of automatic parallelization.