Polynomial Invariant Generation for
Multi-Path Loops
Andreas Humenberger
joint work with

Maximilian Jaroschek and Laura Kovacs

SC? Workshop 2017
Kaiserslautern, July 29

TECHNISCHE f - '
UNIVERSITAT (t I i .
M WIEN Fe qgmg’y e' O ICS Logical Methods in
ormal Methods s
Vienna Austria in Systems Engineering Computer Science

1/13

Roadmap

- Why invariant generation?
- Single-path loops
- Multi-path loops

2/13

Verifying algorithms

Division of a by b where b # 0:

quo :=0;

rem = a;

while b < rem do
rem := rem — b;
quo := quo + 1;

end while

3/13

Verifying algorithms

Division of a by b where b # 0:

quo :=0;

rem = a;

while b < rem do
rem := rem — b;
quo := quo + 1;

end while

- Is this algorithm correct?

3/13

Verifying algorithms

Division of a by b where b # 0:

quo :=0;

rem = a;

while b < rem do
rem := rem — b;
quo := quo + 1;

end while

- Is this algorithm correct?

- Does it terminate?

3/13

Loop invariants

A loop invariant Z for the loop while S do B is an assertion that
satisfies

(I AS}B{T}

4/13

Loop invariants

A loop invariant Z for the loop while S do B is an assertion that

satisfies
{Z ANS}B{Z}

while b < rem do
rem := rem — b;
quo := quo + 1;
end while

s S
{(quo-b+rem—a= OS/\Eb < rem)}
rem := rem — b;
quo := quo + 1;
{(quo-b+rem—a=0)}
z

4/13

Our programming model (for single-path loops)

while pred(vy,...,vy,) do
vi =fh(v,. ., Vm)
: > rational functions
Vi := fn(V1, .-+, Vin)

end while

5/13

Our programming model (for single-path loops)

while pred(vy,...,v,) do

vi =fh(v,. ., Vm)
: rational functions
Vi := fn(V1, .-+, Vin)

end while

5/13

Our programming model (for single-path loops)

while pred(v1,...,vy,) do
Vi = f1(V1, ey Vm)
: > rational functions
Vi := fn(V1, .-+, Vin)
end while

Proposition (Miiller-Olm and Seidl [2004])

The set of all equality invariants is not computable when
considering affine equality tests.

5/13

Our programming model (for single-path loops)

while true do
Vi = fl(Vl, ey Vm)
: > rational functions
Vi = fn(Va1, ..., Vi)
end while

Proposition (Miiller-Olm and Seidl [2004])

The set of all equality invariants is not computable when
considering affine equality tests.

5/13

Our programming model (for single-path loops)

while true do
Vi = fl(Vl, ey Vm)
: > rational functions
Vi = fn(Va1, ..., Vi)
end while

Proposition (Miiller-Olm and Seidl [2004])

The set of all equality invariants is not computable when
considering affine equality tests.

{Z NS}B{Z}

5/13

Our programming model (for single-path loops)

while true do
Vi = fl(Vl, ey Vm)
: > rational functions
Vi = fn(Va1, ..., Vi)
end while

Proposition (Miiller-Olm and Seidl [2004])

The set of all equality invariants is not computable when
considering affine equality tests.

{Z A true}B{Z}

5/13

Our programming model (for single-path loops)

while true do
Vi = fl(Vl, ey Vm)
: > rational functions
Vi = fn(Va1, ..., Vi)
end while

Proposition (Miiller-Olm and Seidl [2004])

The set of all equality invariants is not computable when
considering affine equality tests.

{Z}B{1}

5/13

Our programming model (for single-path loops)

while true do
Vi = fl(Vl, ey Vm)
: > rational functions
Vi = fn(Va1, ..., Vi)
end while

Proposition (Miiller-Olm and Seidl [2004])

The set of all equality invariants is not computable when
considering affine equality tests.

{I}B"{T} forall n € N

5/13

Polynomial invariants

A polynomial p € K[X] is a polynomial invariant of while S do B
among the loop variables V = v, ..., v, with initial values Vy if

{p(V)=0AV =V} B" {p(V) =0} for all n € N.

6/13

Polynomial invariants

A polynomial p € K[X] is a polynomial invariant of while S do B
among the loop variables V = vi, ..., v, with initial values Vj if

{p(V)=0AV =W} B" {p(V) =0} for all n € N.

The set of polynomial invariants is an ideal.

A subset Z C K[X] is an ideal if it satisfies:
(1) 0eZ.

(2) If f,g €Z, then f + g€ T.

(3) If f € Z and h € K[X], then h-f € Z.

6/13

Polynomial invariants

A polynomial p € K[X] is a polynomial invariant of while S do B
among the loop variables V = v, ..., v, with initial values Vy if

{p(V)=0AV =V} B" {p(V) =0} for all n € N.

Observation

The set of polynomial invariants is an ideal.

= Symbolic Computation

6/13

Some facts about ideals

An ideal is generated by a set of elements:

(e1,...,en) = {ne + -+ e, | ri e K[X]}
——

basis

7/13

Some facts about ideals

An ideal is generated by a set of elements:

(e1,...,en) ={ner+- -+ re, | rr € K[X]}
~——

basis

Every ideal T <1 K[X] has a finite basis.

7/13

Some facts about ideals

An ideal is generated by a set of elements:

(e1,...,en) ={ner+- -+ re, | rr € K[X]}
~——

basis

Every ideal T <1 K[X] has a finite basis.

For I, J < K[X, Y] we can compute
I +J (sum)
I NK[X] (elimination ideal; via Grébner bases)

7/13

Assignments and Recurrences

x:=10

y =10

while y > 0 do
x = 2-x+4+3

y =12.y—1
end while

8/13

Assignments and Recurrences

xo = 10
0 0} initial values

x:=10 o=

y =10

while y > 0 do Xn+1 =2 Xn +3 recurrences
X =2-x+3 Ynr1=1/2-y,—1

y =12.y—1
end while

8/13

Assignments and Recurrences

xo = 10
0 0} initial values

x:=10 o=

y:=10

while y > 0 do Xn+1 =2 Xn +3 } recurrences
x = 2-x+3 Ynt1=1/2-yp—1
y = 1/2 -y — 1

end while

Xp =2"-(x+3)—3

closed forms
Yo =27"-(yo+2) -2

8/13

Assignments and Recurrences

xo = 10
0 0} initial values

x:=10 o=

y:=10

while y > 0 do Xn+1 =2 Xn +3 } recurrences
x = 2-x+3 Ynt1=1/2-yp—1
y = 1/2 -y — 1

end while

Xp =2"-(x+3)—3

. closed forms
Yo =27 (v+2)-2

8/13

Loop counter elimination

x=2"-(x+3)—-3
y=2"(y+2)-2

9/13

Loop counter elimination

x=a (x+3)—-3
y=>b-(yo+2) -2

9/13

Loop counter elimination
x=2". (Xb + 3) -3

y=2"-(p+2)-2

0=2"-27"-1 algebraic dependency among 2",27"

9/13

Loop counter elimination

9/13

Loop counter elimination

T —

9/13

Loop counter elimination

0=a-b-1 algebraic dependency among 2",27"

9/13

Loop counter elimination

algebraic dependency among 2", 27"

9/13

Loop counter elimination

_ algebraic dependency among 2", 27"

< K[X07y07xay7 a, b]

9/13

Loop counter elimination

_ algebraic dependency among 2", 27"

< K[X07y07xay7 a, b]

= Grobner bases to the rescue

9/13

Loop counter elimination

_ algebraic dependency among 2", 27"

< K[X07y07xay7 a, b]

= Grobner bases to the rescue

n K[X07y07xa y]

9/13

Loop counter elimination

_ algebraic dependency among 2", 27"
T x=ao+3)+3y—b (o+2)+2) ~ (a:b-1)
VAR K[X07y07xay7 a, b]

= Grobner bases to the rescue

T N K[xo, y0, X%, y] = (=2x + 2x0 — 3y — xy + 3y0 + Xoy0)

9/13

(Extended) P-solvable loops

loops with solvable mappings
(Rodriguez-Carbonell and Kapur [2004])

P-solvable loops (Kovécs [2007])
C-finite sequences
extended P-solvable loops (ISSAC'17)

subsumes C-finite, rational function and hypergeometric
sequences

10/13

(Extended) P-solvable loops

loops with solvable mappings
(Rodriguez-Carbonell and Kapur [2004])

P-solvable loops (Kovécs [2007])
C-finite sequences
extended P-solvable loops (ISSAC'17)

subsumes C-finite, rational function and hypergeometric
sequences

(€ + A) NK[Xo, X]

10/13

Multi-path loops

while b do
if b; then A;

if b, then A,
while bp,11 do Bp41

while b, do B,
end while

11/13

Multi-path loops

while b do
if b; then A;

if b, then A,
while bp,11 do Bp41

while b, do B,
end while

11/13

Multi-path loops

while b do
while b; A f; do B

while b, A f,,, do B,
while bp,11 do Bp,11

while b, do B,
end while

11/13

Multi-path loops

while b do
while b; A f; do B

while b, A f,,, do B,
while bp,11 do Bp,11

while b, do B,
end while

11/13

Multi-path loops

while b do
while b; A f; do B

while b, A f,,, do B,
while b, 1 do B4

while b, do B,
end while

11/13

Multi-path loops

while ... do
while ... do B;

while ... do B,
while ... do B, 11

while ... do B,
end while

11/13

Multi-path loops

while ... do
while ... do B;

while ... do B, B

while ... do B, 11

while ... do B,
end while

11/13

Multi-path loops

while ... do
while ... do B;

while ... do B, Bi; B,

while ... do B, 11

while ... do B,
end while

11/13

Multi-path loops

while ... do
while ... do B;

while ... do B, Bi;Bs;...; B,

while ... do B4

while ... do B,
end while

11/13

Multi-path loops

while ... do
while ... do B

while ... do B, (Bf;Bs;....By)"

while ... do B,

while ... do B,
end while

11/13

Multi-path loops

while ... do
while ... do B

while ... do B, (Bf;Bs;....By)"

while ... do B,

while ... do B,
end while

Compute invariant ideal of

11/13

Multi-path loops

while ... do
while ... do B

while ... do B, (Bf;Bs;....By)"

while ... do B,

while ... do B,
end while

Compute invariant ideal of

B;:....B:
Bf;...;By Bf; ... B,

11/13

Multi-path loops

while ... do
while ... do B;

while ... do B, (Bf;Bs;....By)"

while ... do B, 11

while ... do B,
end while

Compute invariant ideal of

Bf;...;ByBf;...; B}
Bf;...;Bny By ...;ByBf ... By

n

11/13

Multi-path loops

while ... do
while ... do B;

while ... do B, (Bf;Bs;....By)"

while ... do B, 11

while ... do B,
end while

Compute invariant ideal of

Bf;...;ByBf;...; B}
Bf;...;Bny By ...;ByBf ... By

n

until a fixed-point is reached
11/13

Multi-path loops

while ... do
while ... do B;

while ... do B, (Bf;Bs;....By)"

while ... do B, 11

while ... do B,

end while

Compute invariant ideal of
Bt;...; B Fixed-point
Bii....B%Bfi...; B guaranteed

Bi;...;B::B;;...;B:Bl;...; B

until a fixed-point is reached

11/13

Multi-path loops

while ... do
while ... do B;

while ... do B,
while ... do B, 11

while ... do B,
end while

Compute invariant ideal of

B;;...;B::B;...; B

Bii...;Bii By ...i BB ..

until a fixed-point is reached

(Bi; Ba;

Fixed-point
guaranteed

Bound: k41

for k loop vars

11/13

Merging loops

By

12/13

Merging loops

initial values
*
B;

initial values
*
B;

12/13

Merging loops

initial values
E3

B;

final values

initial values
*

B;

final values

12/13

Merging loops

initial values
*

B;

final values

initial values
E3

B;

final values

12/13

Merging loops

B X1 :2m~(X0+3)—3
"l =27 (o +2) -2

initial values

By

final values

initial values

E§| | B =2"-(xa+3)-3
es

Inal valu 2 Vv :27’7'()/14‘2)—2

12/13

Merging loops

x1 =a-(x+3)—-3
C1 b

initial values i =b-(y+2)—-2
By
final values

initial values

12/13

Merging loops

C{Xl =a (X0+3)—3
1
initial values i =b-(yo+2)-2
B; Ao =ab-1
final values
initial values
ESI | 0, 1% =c-(xx+3)-3
inal values 2
y2. =d-(y1+2)-2
Ao {o —c.d—1

12/13

Merging loops

C{Xl =a (X0+3)—3
1
initial values i =b-(yo+2)-2
B; Ao =ab-1
final values
initial values
ESI | 0, 1% =c-(xx+3)-3
inal values 2
y2. =d-(y1+2)-2
Ao {o —c.d—1

(C1 + A1 + Co + A2) N K[xo, yo, x2, y2]

12/13

Merging loops

c X1 =a (Xo + 3) -3
1
initial values i =b-(yo+2)-2
B _
final values A {0 =a-b-1
initial values
Bx _
2 x =c-(x1+3)-3
final values Co
y2. =d-(y1+2)-2
Ao {o —cd—1
(C1 + A1 + Co + A2) N K[xo, yo, x2, y2]
= (T + Co + A2) N K[xo, yo, X2, y2]

invariant ideal of first loop

12/13

Conclusion

- Fixed-point computation

13/13

https://ahumenberger.github.io/aligator/

Conclusion

- Fixed-point computation

- most probably terminates

13/13

https://ahumenberger.github.io/aligator/

Conclusion

- Fixed-point computation
- most probably terminates

- bound on the number of the iterations

13/13

https://ahumenberger.github.io/aligator/

Conclusion

Fixed-point computation

- most probably terminates

- bound on the number of the iterations

combination with other algorithms

13/13

https://ahumenberger.github.io/aligator/

Conclusion

Fixed-point computation
- most probably terminates

- bound on the number of the iterations

combination with other algorithms

ALIGATOR Mathematica package
Available at https://ahumenberger.github.io/aligator/

13/13

https://ahumenberger.github.io/aligator/

(Extended) P-solvable loops

Definition (Kovacs [2007])

A loop with assignments only is called P-solvable if the closed
forms of its recursively changed variables xi, ..., x, are of the form

xi(n) = pia(nf1 + - -+ pis(n)ds

14/13

(Extended) P-solvable loops

Definition (Kovacs [2007])

A loop with assignments only is called P-solvable if the closed
forms of its recursively changed variables xi, ..., x, are of the form

x(n) = pia(ni + - -+ pis(n)ds

14/13

(Extended) P-solvable loops

Definition (Kovacs [2007])

A loop with assignments only is called P-solvable if the closed
forms of its recursively changed variables xi, ..., x, are of the form

xi(n) = pia(n)0i + - -+ pis(n)ds

14/13

(Extended) P-solvable loops

Definition (Kovacs [2007])

A loop with assignments only is called P-solvable if the closed
forms of its recursively changed variables xi, ..., x, are of the form

xi(n) = pia(nf1 + - -+ pis(n)ds

Definition (ISSAC'17)

A loop with assignments only is called extended P-solvable if the
closed forms of its recursively changed variables xi, ..., x, are of
the form

vi(n) = pik(n,07,...,07)

14/13

(Extended) P-solvable loops

Definition (Kovacs [2007])

A loop with assignments only is called P-solvable if the closed
forms of its recursively changed variables xi, ..., x, are of the form

xi(n) = pia(nf1 + - -+ pis(n)ds

Definition (ISSAC'17)

A loop with assignments only is called extended P-solvable if the

closed forms of its recursively changed variables xi, ..., x, are of
the form
viln) = pik(n,07,...,02)((n+ C)D - ((n + C)™)™

14/13

(Extended) P-solvable loops

Definition (Kovacs [2007])

A loop with assignments only is called P-solvable if the closed
forms of its recursively changed variables xi, ..., x, are of the form

xi(n) = pia(nf1 + - -+ pis(n)ds

Definition (ISSAC'17)

A loop with assignments only is called extended P-solvable if the

closed forms of its recursively changed variables xi, ..., x, are of
the form
vi(n) = > pik(n 07, ... 00)((n+)M - ((n+ G))*
kezt

14/13

	Appendix

